Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2025-03-10
Page range: 476-490
Abstract views: 105
PDF downloaded: 4

Description and Phylogenetic Studies on the Complete Mitochondrial Genome of Kingdonella qinghaiensis Zheng (Insecta: Orthoptera: Acrididae)

College of Life Science; Huaibei Normal University; Huaibei; 235000; China
College of Life Science; Huaibei Normal University; Huaibei; 235000; China
College of Life Science; Huaibei Normal University; Huaibei; 235000; China
College of Life Science; Huaibei Normal University; Huaibei; 235000; China
College of Life Science; Huaibei Normal University; Huaibei; 235000; China
College of Life Science; Huaibei Normal University; Huaibei; 235000; China
College of Life Science; Huaibei Normal University; Huaibei; 235000; China
College of Life Science; Huaibei Normal University; Huaibei; 235000; China
College of Life Science; Huaibei Normal University; Huaibei; 235000; China
Orthoptera Kingdonella qinghaiensis Mitogenome Phylogeny

Abstract

Kingdonella qinghaiensis Zheng, 1990 a species belonging to the genus Kingdonella Uvarov, 1933, within the family Acrididae in the order Orthoptera, is mainly distributed in Qinghai province, China. In this study, we determined, assembled and annotated the mitochondrial genome of Kingdonella qinghaiensis. The mitogenome is 15,597 bp in length and contains 13 protein-coding genes (PCGs), 22 tRNA genes, 2 rRNA genes and a control region (D-loop). The entire mitogenome exhibits a strong A/T bias, with an A+T content of 75.4%. All 13 PCGs had the typical start codon of ATN (9 ATGs, 2 ATCs and 2 ATTs) and TAA was the most frequent stop codon in Kingdonella qinghaiensis PCGs, except TAGs for ND3 and ND1 genes. A total of 3,730 codons are present in the mitogenomic PCGs of Kingdonella qinghaiensis. Among these, UUA (9.65%) is the most frequent codon for leucine (L), followed by AUU (9.3%) for isoleucine (I), and UUU (8.12%) for phenylalanine (F). The Ka/Ks ratios of the 13 PCGs in Kingdonella qinghaiensis mitogenome ranged from 0.1436 to 0.9107 (0<Ka/Ks<1), and ND4L had the highest ratio while COX1 gene had the lowest value. The nucleotides diversity (Pi) analysis of the 13 PCGs from 46 species in Acrididae implied that ND2 gene contained the highest variability site (0.27862). While ND5, ND4 and ND1 had comparatively low nucleotide diversities. The phylogenetic tree based on the nucleotide sequences of the 13 PCGs from 46 different species (including 2 outgroups) supported the monophyly of Acrididae and indicated two stable clades in Acrididae. The phylogenetic analyses represented the main topology as follows: ((((Catantopinae+Calliptaminae) +Cyrtacanthacridinae) + ((Spathosterninae+Oxyinae) + Melanoplinae)) + (((Oedipodinae+Acridinae) + Gomphocerinae) +Coptacrinae)). Species from Melanoplinae in the phylogenetic tree confirmed that Kingdonella qinghaiensis had the closer taxonomy relationship with Kingdonella bicollina, another member in the same genus.

 

References

  1. Avise, J.C. (1993) Molecular markers, natural history and evolution. Systematic Biology, 44 (1), 511. https://doi.org/10.1007/978-1-4615-2381-9_3
  2. Bernt, M., Donath, A., Jühling, F., Externbrink, F., Florentz, C., Fritzsch, G., Pütz, J., Middendorf, M. & Stadler, P.F. (2013) MITOS: Improved de novo Metazoan Mitochondrial Genome Annotation. Molecular Phylogenetics and Evolution, 69 (2), 313–319. https://doi.org/10.1016/j.ympev.2012.08.023
  3. Cameron, S.L. (2014) Insect Mitochondrial Genomics: Implications for Evolution and Phylogeny. Annual Review of Entomology, 59, 95–117. https://doi.org/10.1146/annurev-ento-011613-162007
  4. Chen, X., Yuan, Z., Li, C., Dietrich, C.H. & Song, Y. (2021) Structural features and phylogenetic implications of Cicadellidae subfamily and two new mitogenomes leafhoppers. PLoS ONE, 16 (5), e0251207. https://doi.org/10.1371/journal.pone.0251207
  5. Cigliano, M.M., Braun, H., Eades, D.C. & Otte, D. (2022) Orthoptera species file. Version 5.0/5.0. Available from: http://Orthoptera.SpeciesFile.org (accessed 21 October 2024)
  6. Curle, J.P. & Kocher, T.D. (1999) Mitogenomics: digging deeper with complete mitochondrial genomes. Trends in Ecology & Evolution, 47, 311–335. https://doi.org/10.1016/S0169-5347(99)01660-2
  7. da Silva, F.S., Cruz, A.C.R., de Almeida Medeiros, D.B., da Silva, S.P., Nunes, M.R.T., Martins, L.C., Chiang, J.O., da Silva, L.P., Cunha, G.M., de Araujo, R.F., de Oliveira Monteiro, H.A. & Nunes Neto, J.P. (2020) Mitochondrial genome sequencing and phylogeny of Haemagogus albomaculatus, Haemagogus leucocelaenus, Haemagogus spegazzinii, and Haemagogus tropicalis (Diptera: Culicidae). Scientific Reports, 10, 16948. https://doi.org/10.1038/s41598-020-73790-x
  8. Deng, J.L., Yu, Z.Q., Ning, J., Wang, H., Lin, X.D. & Liu, X.L. (2020) Complete mitochondrial genome and phylogenetic analysis of a Chorthippus fallax (Zuboxsky) isolated in rangeland of northwest region of China. Mitochondrial DNA Part B, 5, 61–62. https://doi.org/10.1080/23802359.2019.1695549
  9. Ding, X.H., Fu, Y., Zhou, X., Yang, S.B., Cao, Y.M., Hou, F.X., Liu, X.L. & Sun, T. (2022) Complete mitogenome of Calliptamus barbarus Costa (Orthoptera: Acrididae) and its phylogeny in Acridoidea. Zootaxa, 5213 (4), 427–440. https://doi.org/10.11646/zootaxa.5213.4.6
  10. Du, Z., Hasegawa, H., Cooley, J.R., Simon, C., Yoshimura, J., Cai, W., Sota, T. & Li, H. (2019) Mitochondrial Genomics Reveals Shared Phylogeographic Patterns and Demographic History among Three Periodical Cicada Species Groups. Molecular Biology and Evolution, 36, 1187–1200. https://doi.org/10.1093/molbev/msz051
  11. Du, Z., Wu, Y., Chen, Z., Cao, L., Ishikawa, T., Kamitani, S., Sota, T., Song, F., Tian, L., Cai, W. & Li, H. (2021) Global Phylogeography and Invasion History of the Spotted Lanternfly Revealed by Mitochondrial Phylogenomics. Evolutionary Applications, 14, 915–930. https://doi.org/10.1111/eva.13170
  12. Eberhard, J.R. & Wright, T.F. (2016) Rearrangement and evolution of mitochondrial genomes in parrots. Molecular Phylogenetics and Evolution, 94, 34–36. https://doi.org/10.1016/j.ympev.2015.08.011
  13. Fang, X., Wang, X., Mao, B., Xiao, Y., Shen, M. & Fu, Y. (2023) Comparative mitogenome analyses of twelve non-biting flies and provide insights into the phylogeny of Chironomidae (Diptera: Culicomorpha). Scientific Reports, 13, 9200. https://doi.org/10.1038/s41598-023-36227-9
  14. Gissi, C., Iannelli, F. & Pesole, G. (2008) Evolution of the mitochondrial genome of Metazoa as exemplified by comparison of congeneric species. Heredity, 101, 301–320. https://doi.org/10.1038/hdy.2008.62
  15. Hurst, L.D. (2002) The Ka/Ks ratio: diagnosing the form of sequence evolution. Trends in Genetics, 18, 486–487. https://doi.org/10.1016/S0168-9525(02)02722-1
  16. Jia, W.Z., Yan, H.B., Guo, A.J., Zhu, X.Q., Wang, Y.C., Shi, W.G., Chen, H.T., Zhan, F. & Zhang, S.H. (2010) Complete mitochondrial genomes of Taeniamulticeps, T. hydatigena and T. pisiformis: Additional molecular markers for a tapeworm genus of human and animal health significance. BMC Genomics, 11, 447. https://doi.org/10.1186/1471-2164-11-447
  17. Julio, R., Albert, F.M., Sánchez-DelBarrio Juan Carlos, Sara, G.R., Pablo, L., Ramos-Onsins, S.E. & Alejandro, S.G. (2017) Dnasp 6: dna sequence polymorphism analysis of large data sets. Molecular Biology & Evolution, 12, 12.
  18. Junqueira, A.C.M., Azeredo-Espin, A.M.L., Paulo, D.F., Marinho, M.A.T., Tomsho, L.P., Drautz-Moses, D.I., Purbojati, R.W., Ratan, A. & Schuster, S.C. (2016) Large-Scale Mitogenomics Enables Insights into Schizophora (Diptera) Radiation and Population Diversity. Scientific Reports, 6, 21762. https://doi.org/10.1038/srep21762
  19. Katoh, K. & Standley, D.M. (1995) Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. Journal of Molecular Evolution, 41, 353–358. https://doi.org/10.1007/BF01215182
  20. Kerpedjiev, P., Hammer, S. & Hofacker, I.L. (2015) Forna (force-directed RNA): Simple and effective online RNA secondary structure diagrams. Bioinformatics, 31, 3377–3379. https://doi.org/10.1093/bioinformatics/btv372
  21. Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. (2018) MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Molecular Biology and Evolution, 35 (6), 1547–1549. https://doi.org/10.1093/molbev/msy096
  22. Li, H., Leavengood, J.M., Chapman, E.G., Burkhardt, D., Song, F., Jiang, P., Liu, J., Zhou, X. & Cai, W. (2017) Mitochondrial Phylogenomics of Hemiptera Reveals Adaptive Innovations Driving the Diversification of True Bugs. Proceedings of the Royal Society B-Biological Sciences, 284, 20171223. https://doi.org/10.1098/rspb.2017.1223
  23. Li, R., Wang, Y., Shu, X., Meng, L. & Li, B. (2020) Complete mitochondrial genomes of three Oxya grasshoppers (Orthoptera) and their implications for phylogenetic reconstruction. Genomics, 112 (1), 289–296. https://doi.org/10.1016/j.ygeno.2019.02.008
  24. Liu, Z.Q., Wang, Y.Q., Zhao, J., Shi, Y. & Zhu, X.P. (2005) The mitochondrial genome organization of the rice frog, Fejervarya limnocharis, (Amphibia: Anura): a new gene order in the vertebrate mtDNA. Gene, 346, 145–151. https://doi.org/10.1016/j.gene.2004.10.013
  25. Lowe, T.M. & Chan, P.P. (2016) tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Research, 44 (W1), W54–W57. https://doi.org/10.1093/nar/gkw413
  26. Nguyen, L.T., Schmidt, H.A., von Haeseler, A. & Minh, B.Q. (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32, 268–274. https://doi.org/10.1093/molbev/msu300
  27. Qian, Y.H., Wu, H.Y., Ji, X.Y., Yu, W.W. & Du, Y.Z. (2014) Mitochondrial genome of the stonefly Kamimuria wangi (Plecoptera: Perlidae) and phylogenetic position of plecoptera based on mitogenomes. PLoS ONE, 9, e86328. https://doi.org/10.1371/journal.pone.0086328
  28. Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Hohna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539–542. https://doi.org/10.1093/sysbio/sys029
  29. Salvato, P., Simonato, M., Battisti, A. & Negrisolo, E. (2008) The complete mitochondrial genome of the bag-shelter moth Ochrogaster lunifer (Lepidoptera, Notodontidae). BMC Genomics, 9, 331. https://doi.org/10.1186/1471-2164-9-331
  30. Simon, C. (1991) Molecular systematics at the species boundary: Exploiting conserved and variable regions of the mitochondrial genome of animals via direct sequencing from amplified DNA. In: Hewitt, G.M., Johnston, A.W.B. & Young, J.P.W. (Eds.), Molecular techniques in taxonomy. Springer-Verlag, Berlin, pp. 33–71. https://doi.org/10.1007/978-3-642-83962-7_4
  31. Song, H., Mariño-Pérez, R., Woller, D. & Cigliano, M.M. (2018) Evolution, Diversification, and Biogeography of Grasshoppers (Orthoptera: Acrididae). Insect Systematics and Diversity, 2, 1–25. https://doi.org/10.1093/isd/ixy008
  32. Sun, S., Li, Q., Kong, L. & Yu, H. (2018) Multiple reversals of strand asymmetry in molluscs mitochondrial genomes, and consequences for phylogenetic inferences. Molecular Phylogenetics and Evolution, 118, 223–231. https://doi.org/10.1016/j.ympev.2017.10.009
  33. Villanueva, R.A.M. & Chen, Z.J. (2016) Ggplot2: elegant graphics for data analysis. 2nd Edition. Springer, New York, New York, 260 pp.
  34. Wang, L., Chen, J., Xue, X., Qin, G., Gao, Y., Li, K., Zhang, Y. & Li, X. (2023) Comparative analysis of mitogenomes among three species of grasshoppers (Orthoptera: Acridoidea: Gomphocerinae) and their phylogenetic implications. Peer Journal, 11, e16550. https://doi.org/10.7717/peerj.16550
  35. Woller, D.A., Fontana, P., Mariño-Pérez, R. & Song, H. (2014) Studies in Mexican grasshoppers: Liladownsia fraile, a new genus and species of Dactylotini (Acrididae: Melanoplinae) and an updated molecular phylogeny of Melanoplinae. Zootaxa, 3793 (4), 475–495. https://doi.org/10.11646/zootaxa.3793.4.6
  36. Wu, X., Li, Y., Zhang, H., Yan, L. & Wu, X.B. (2016) The complete mitochondrial genome of Microhyla pulchra (Amphibia: Anura, Microhylidae). Mitochondrial DNA Part A, 27, 40–41. https://doi.org/10.3109/19401736.2013.869685
  37. Xiao, B., Chen, W., Hu, C.C. & Jiang, G.F. (2012) Complete mitochondrial genome of the groundhopper Alulatettix yunnanensis (Insecta: Orthoptera: Tetrigoidea). Mitochondrial DNA, 23, 286–287. https://doi.org/10.3109/19401736.2012.674122
  38. Xie, Y., Zhang, Z., Niu, L., Wang, Q., Wang, C., Lan, J., Deng, J., Fu, Y., Nie, H. & Yan, N. (2011) The mitochondrial genome of Baylisascaris procyonis. PLoS ONE, 6, e27066. https://doi.org/10.1371/journal.pone.0027066
  39. Xu, D.L., Yu, T.H. & Zhang, Y.L. (2020) Characterization of the Complete Mitochondrial Genome of Drabescus ineffectus and Roxasellana stellata (Hemiptera: Cicadellidae: Deltocephalinae: Drabescini) and Their Phylogenetic Implications. Insects, 11, 534. https://doi.org/10.3390/insects11080534
  40. Yan, L., Pape, T., Elgar, M.A., Gao, Y. & Zhang, D. (2019) Evolutionary History of Stomach Bot Flies in the Light of Mitogenomics. Systematic Entomology, 44, 797–809. https://doi.org/10.1111/syen.12356
  41. Ye, F., Easy, R.H., King, S.D., Cone, D.K. & You, P. (2017) Comparative analyses within Gyrodactylus (Platyhelminthes: Monogenea) mitochondrial genomes and conserved polymerase chain reaction primers for gyrodactylid mitochondrial DNA. Journal of Fish Disease, 40, 541–555. https://doi.org/10.1111/jfd.12539
  42. Yuan, L., Liu, H., Ge, X., Yang, G., Xie, G. & Yang, Y. (2022) A Mitochondrial Genome Phylogeny of Cleridae (Coleoptera, Cleroidea). Insects, 13, 118. https://doi.org/10.3390/insects13020118
  43. Zhang, D., Gao, F., Jakovlic, I., Zou, H, Zhang, J., Li, W.X. & Wang, G.T. (2020) PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Molecular Ecology Resources, 20, 348–355. https://doi.org/10.1111/1755-0998.13096
  44. Zhang, D., Yan, L., Zhang, M., Chu, H., Cao, J., Li, K., Hu, D. & Pape, T. (2016) Phylogenetic Inference of Calyptrates, with the First Mitogenomes for Gasterophilinae (Diptera: Oestridae) and Paramacronychiinae (Diptera: Sarcophagidae). International Journal of Biological Sciences, 12, 489. https://doi.org/10.7150/ijbs.12148
  45. Zheng, Z.M. (1990) Three new locust species from Hengduanshan Range of China (Orthoptera: Acridoidea). Acta Zootaxonomica Sinica, 15 (2), 196–200.
  46. Zhi, Y.C., Liu, B., Han, G.F., Yin, H. & Zhang, D.C. (2016) The complete mitochondrial genome of Kingdonella bicollina (Orthoptera: Acridoidea: Catantopidae). Mitochondrial DNA Part A, 27 (1), 391–392. https://doi.org/10.3109/19401736.2014.896000
  47. Zhou, J. & Yang, D. (2022) Mitochondrial Genomes Provide New Phylogenetic and Evolutionary Insights into Psilidae (Diptera: Brachycera). Insects, 13, 518. https://doi.org/10.3390/insects13060518