Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2025-03-14
Page range: 309-328
Abstract views: 260
PDF downloaded: 5

Phylogenomic species delimitation of studfishes (Fundulidae: Fundulus): evidence for cryptic species in agreement with the central highlands vicariance hypothesis

Department of Wildlife; Fisheries and Aquaculture; Mississippi State University; Mississippi State; MS.
Bell Museum of Natural History; University of Minnesota; 2088 Larpenteur Ave.; St Paul; MN.
Protected Species Practice; EDGE Engineering and Science; LLC; Houston; TX.
Department of Wildlife; Fisheries and Aquaculture; Mississippi State University; Mississippi State; MS.; Forest and Wildlife Research Center; Mississippi State University; Mississippi State; MS.
Pisces biogeography genomics ddRADseq endemism

Abstract

The Central Highlands ecoregion of the eastern United States represents a hotspot of freshwater biodiversity, with replicated patterns of vicariant speciation east and west of the Mississippi River. Previous phylogeographic investigation of the studfishes (Fundulus subgenus Fundulus) revealed evidence for vicariant speciation in the Central Highlands, but data were limited to a small number of gene sequences generated with Sanger sequencing. We used double digest restriction-site associated DNA sequencing (ddRADseq) to improve resolution of phylogeographic patterns and better characterize population genetic variation. Our sample design included individuals from the Fundulus catenatus species group (F. catenatus, F. bifax, and F. stellifer) and two outgroup taxa (F. julisia and F. rathbuni). Phylogenetic analyses support a monophyletic F. catenatus complex and a sister relationship with Mobile Basin studfishes (F. bifax and F. stellifer). Population genomics and species delimitation tests provide evidence for three species-level subdivisions of F. catenatus. We describe F. catenatus as limited to the Tennessee River and its drainages, F. caddo sp. nov., in the Ouachita Highlands, and F. cryptocatenatus sp. nov., occupying the remainder of the range. Modally, F. catenatus was characterized by fewer left pectoral rays (16 vs. 17). Fundulus caddo sp. nov. had modally fewer anal rays (15 vs. 16) and lateral scale rows (13 vs. 14). Fundulus cryptocatenatus sp. nov. was characterized by modally higher dorsal rays (15 vs. 14) and fewer caudal rays (16 vs. 17). The geographic distribution is likely the result of multiple pre-Pleistocene vicariance events congruent with the Central Highlands Vicariance Hypothesis as well as separate, possibly subsequent, dispersal events. Overall, results of this study corroborate previous evidence for a complex biogeographic history of taxa endemic to rivers of the Central Highlands ecoregion. The improved resolution of genomic variation among studfish populations will guide future studies of morphological variation and will improve conservation plans for rare and endemic taxa in a freshwater biodiversity hotspot.

 

References

  1. Ahlstedt, S.A., Powell, J.R., Butler, R.S., Fagg, M.T., Hubbs, D.W., Novak, S.F., Palmer, S.R. & Johnson, P.D. (2017) Historical and current examination of freshwater mussels (Bivalvia: Margaritiferidae: Unionidae) in the Duck River Basin Tennessee. Malacological Review, 45, 1–163.
  2. Beheregaray, L.B., Pfeiffer, L.V., Attard, C.R.M., Sandoval-Castillo, J., Domingos, F.M.C.B., Faulks, L.K., Gilligan, D.M. & Unmack, P.J. (2017) Genome-wide data delimits multiple climate-determined species ranges in a widespread Australian fish, the Golden Perch (Macquaria ambigua). Molecular Phylogenetics and Evolution, 111, 65–75. https://doi.org/10.1016/j.ympev.2017.03.021
  3. Berendzen, P.B., Simons, A.M. & Wood, R.M. (2003) Phylogeography of the Northern Hogsucker, Hypentelium nigricans (Teleostei: Cypriniformes): Genetic evidence for the existence of the ancient Teays River. Journal of Biogeography, 30, 1139–1152. https://doi.org/10.1046/j.1365-2699.2003.00888.x
  4. Berendzen, P.B., Simons, A.M., Wood, R.M., Dowling, T.E. & Secor, C.L. (2008) Recovering cryptic diversity and ancient drainage patterns in eastern North America: Historical biogeography of the Notropis rubellus species group (Teleostei: Cypriniformes). Molecular Phylogenetics and Evolution, 46, 721–737. https://doi.org/10.1016/j.ympev.2007.07.008
  5. Borowiec, M.L. (2016) AMAS: a fast tool for alignment manipulation and computing of summary statistics. PeerJ, 4, e1660. https://doi.org/10.7717/peerj.1660
  6. Boschung, H.T. & Mayden, R.L. (2004) Fishes of Alabama. Smithsonian Books, Washington D.C., 960 pp.
  7. Branson, B.A. & Batch, D.L. (1971) Stream capture in Kentucky indicated by distributional records of Fundulus catenatus and Etheostoma spectabile. The American Midland Naturalist, 86, 496–500. https://doi.org/10.2307/2423641
  8. Briggs, J.C. (1986) The Zoogeography of North American Freshwater Fishes. In: Hocutt, C.H. & Wiley, E.O. (Eds.), Introduction to the Zoogeography of North American Fishes. John Wiley & Sons, New York, pp. 1–16.
  9. Burkhart, J.J., Puckett, E.E., Beringer, C.J., Sholy, C.N., Semlitsch, R.D. & Eggert, L.S. (2019) Post-Pleistocene differentiation in a Central Interior Highlands endemic salamander. Ecology and Evolution, 9, 11171–11184. https://doi.org/10.1002/ece3.5619
  10. Burr, B.M. & Page. L.M. (1986) Zoogeography of the fishes of the lower Ohio-upper Mississippi basin. In: Hocutt, C.H. & Wiley, E.O. (Eds.), The zoogeography of North American freshwater fishes. John Wiley and Sons, New York, New York, pp. 287–324.
  11. Butler, R.S. (2002) Imperiled Fishes of the Lower Tennessee Cumberland Ecosystem, with Emphasis on the Non-Federally Listed Fauna. Prepared for the Lower Tennessee Cumberland Ecosystem Team, USFWS, Asheville, NC. 39 pp.
  12. Cashner, R.C., Rogers, J.S. & Grady, J.M. (1988) Fundulus bifax, a new species of the subgenus Xenisma from the Tallapoosa and Coosa river systems of Alabama and Georgia. Copeia, 1988 (3), 674–683. https://doi.org/10.2307/1445387
  13. Cashner, R.C., Schaefer, J., Warren Jr, M.L., Echelle, A.A., Galvez, F. & Ghedotti, M.J. (2020) Fundulidae: topminnows. In: Warren, M.L. Jr., Burr, B.M., Echelle, A.E., Kuhajda, B.R. & Ross, S.T. (Eds.), Freshwater fishes of North America. Johns Hopkins University Press, Baltimore, MD, USA, pp. 549–608.
  14. Chambers, E.A. & Hillis, D.M. (2020) The multispecies coalescent over-splits species in the case of geographically widespread taxa. Systematic Biology, 69, 184–193. https://doi.org/10.1093/sysbio/syz042
  15. Chan, K.O., Alexander, A.M., Grismer, L.L., Su, Y.-C., Grismer, J.L., Quah, E.S.H. & Brown, R.M. (2017) Species delimitation with gene flow: A methodological comparison and population genomics approach to elucidate cryptic species boundaries in Malaysian Torrent Frogs. Molecular Ecology, 26, 5435–5450. https://doi.org/10.1111/mec.14296
  16. Cincotta, D.A., Bladsoe, K.D. & Jernejcic, F. (1990) Addition of Fundulus catenatus (Storer) to West Virginia’s ichthyofauna. Proceedings of the West Virginia Academy of Science, 62 (2), 51–56.
  17. Conant, R. (1960) The Queen Snake, Natrix septemvittata, in the Interior Highlands of Arkansas and Missouri, with comments upon similar disjunct distributions. Proceedings of the Academy of Natural Sciences of Philadelphia, 112, 25–40.
  18. Courtois, B., Audebert, A., Dardou, A., Roques, S., Ghneim-Herrera, T., Droc, G., Frouin, J., Rouan, L., Gozé, E., Kilian, A., Ahmadi, N. & Dingkuhn, M. (2013) Genome-wide association mapping of root traits in a japonica rice panel. PLOS ONE, 8, e78037. https://doi.org/10.1371/journal.pone.0078037
  19. Cracraft, J. (1983) Species concepts and speciation analysis. In: Johnston, R.F. (Ed), Current Ornithology. Springer, New York, New York, pp. 159–187.
  20. Cruz, V.M.V., Kilian, A. & Dierig, D.A. (2013) Development of DArT marker platforms and genetic diversity assessment of the U.S. collection of the new oilseed crop lesquerella and related species. PLoS ONE, 8, e64062. https://doi.org/10.1371/journal.pone.0064062
  21. de Queiroz, K. & Donoghue, M.J. (1990) Phylogenetic systematics and species revisited. Cladistics, 6, 83–90. https://doi.org/10.1371/journal.pone.0064062
  22. Dingerkus, G. & Uhler, L.D. (1977) Enzyme clearing of alcian blue stained whole small vertebrates for demonstration of cartilage. Stain Technology, 52, 229–232. https://doi.org/10.3109/10520297709116780
  23. Donoghue, M.J. & Moore, B.R. (2003) Toward an integrative historical biogeography. Integrative and Comparative Biology, 43, 261–270. https://doi.org/10.1093/icb/43.2.261
  24. Drummond, A.J. & Rambaut, A. (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7 (214), 1–8. https://doi.org/10.1186/1471-2148-7-214
  25. Egge, J.J.D. & Simons, A.M. (2006) The challenge of truly cryptic diversity: diagnosis and description of a new madtom catfish (Ictaluridae: Noturus). Zoologica Scripta, 35, 581–595. https://doi.org/10.1111/j.1463-6409.2006.00247.x
  26. Elkins, D., Sweat, S.C., Kuhajda, B.R., George, A.L., Hill, K.S. & Wenger, S.J. (2019) Illuminating hotspots of imperiled aquatic biodiversity in the southeastern US. Global Ecology and Conservation, 19, e00654. https://doi.org/10.1016/j.gecco.2019.e00654
  27. Etnier, D. & Starnes, W. (1993) The Fishes of Tennessee. University of Tennessee Press, Knoxville, Tennessee, 696 pp.
  28. Flouri, T., Jiao, X., Rannala, B. & Yang, Z. (2018) Species tree inference with bpp using genomic sequences and the multispecies coalescent. Molecular Biology and Evolution, 35, 2585–2593. https://doi.org/10.1093/molbev/msy147
  29. Frichot, E. & François, O. (2015) LEA: An R package for landscape and ecological association studies. Methods in Ecology and Evolution, 6, 925–929. https://doi.org/10.1111/2041-210X.12382
  30. Fuller, P. & Neilson, M. (2024) Fundulus catenatus (Storer, 1846). U.S. Geological Survey, Nonindigenous Aquatic Species Database. U.S. Geological Survey, Gainesville, Florida. Available from: https://nas.er.usgs.gov/queries/FactSheet.aspx?speciesID=683 (accessed 26 June 2024)
  31. George, A.L., Neely, D.A. & Mayden, R.L. (2006) Conservation genetics of an imperiled riverine fish from eastern North America, the Blotchside Logperch, Percina burtoni (Teleostei: Percidae). Copeia, 2006 (4), 585–594. https://doi.org/10.1643/0045-8511(2006)6[585:CGOAIR]2.0.CO;2
  32. Ghedotti, M.J. & Davis, M.P. (2013) Phylogeny, classification, and evolution of salinity tolerance of the North American topminnows and killifishes, Family Fundulidae (Teleostei: Cyprinodontiformes). Fieldiana Life and Earth Sciences, 2013 (7), 1–65. https://doi.org/10.3158/2158-5520-12.7.1
  33. Ghedotti, M.J. & Davis, M.P. (2017) The taxonomic placement of three fossil Fundulus species and the timing of divergence within the North American topminnows (Teleostei: Fundulidae). Zootaxa, 4250 (6), 577–586. https://doi.org/10.11646/zootaxa.4250.6.5
  34. Ghedotti, M.J., Simons, A.M. & Davis, M.P. (2004) Morphology and phylogeny of the studfish clade, subgenus Xenisma (Teleostei: Cyprinodontiformes). Copeia, 2004 (1), 53–61. https://doi.org/10.1643/CI-02-184R2
  35. Ghezelayagh, A., Simmons, J.W., Wood, J.E., Yamashita, T., Thomas, M.E., Blanton, R.E., Orr, O.D., Macguigan, D.J., Kim, D., Benavides, E., Keck, B.P., Harrington, R.C. & Near, T.J. (2025) Comparative species delimitation of a biological conservation icon. Current Biology, 35, 1–9. https://doi.org/10.1016/j.cub.2024.11.053
  36. Grady, J.M., Cashner, R.C. & Rogers, J.S. (1990) Evolutionary and biogeographic relationships of Fundulus catenatus (Fundulidae). Copeia, 1990, 315–323. https://doi.org/10.2307/1446337
  37. Gruber, B., Unmack, P.J., Berry, O.F. & Georges, A. (2018) DARTR: An r package to facilitate analysis of SNP data generated from reduced representation genome sequencing. Molecular Ecology Resources, 18, 691–699. https://doi.org/10.1111/1755-0998.12745
  38. Hall, G.E. (1956) Additions to the fish fauna of Oklahoma with a summary of introduced species. Southwestern Naturalist, 1 (1), 16–26. https://doi.org/10.2307/3668894
  39. Hansen, M.M. & Mensberg, K.L.D. (2009) Admixture analysis of stocked brown trout populations using mapped microsatellite DNA markers: indigenous trout persist in introgressed populations. Biology Letters, 5 (5), 656–659. https://doi.org/10.1098/rsbl.2009.0214
  40. Harrington, R.C. & Near, T.J. (2012) Phylogenetic and coalescent strategies of species delimitation in Snubnose Darters (Percidae: Etheostoma). Systematic Biology, 61 (1), 63–79. https://doi.org/10.1093/sysbio/syr077
  41. Hart, P.B., Niemiller, M.L., Armbruster, J.W. & Chakrabarty, P. (2024) Conservation implications for the world’s most widely distributed cavefish species complex based on population genomics (Typhlichthys, Percopsiformes). Conservation Genetics, 25 (1), 165–177. https://doi.org/10.1007/s10592-023-01562-x
  42. Hernández-Ávila, S.G., Hoagstrom, C.W. & Matamoros, W.A. (2024) Historical biogeography of North American killifishes (Cyprinodontiformes) recapitulates geographical history in the Gulf of México watershed. Zoological Journal of the Linnean Society, 202 (2), zlae105. https://doi.org/10.1093/zoolinnean/zlae105
  43. Hollingsworth Jr, P.R. & Near, T.J. (2009) Temporal patterns of diversification and microendemism in Eastern Highland endemic Barcheek Darters (Percidae: Etheostomatinae). Evolution, 63, 228–243. https://doi.org/10.1111/j.1558-5646.2008.00531.x
  44. Hundt, P.J., Berendzen, P.B. & Simons, A.M. (2016) Species delimitation and phylogeography of the studfish Fundulus catenatus species group (Ovalentaria: Cyprinodontiformes). Zoological Journal of the Linnean Society, 180, 461–474. https://doi.org/10.1111/zoj.12485
  45. Jackson, N.D., Carstens, B.C., Morales, A.E. & O’Meara, B.C. (2017) Species delimitation with gene flow. Systematic Biology, 66, 799–812. https://doi.org/10.1093/sysbio/syw117
  46. Joppa, L.N., Roberts, D.L., Myers, N. & Pimm, S.L. (2011) Biodiversity hotspots house most undiscovered plant species. Proceedings of the National Academy of Sciences, 108, 13171–13176. https://doi.org/10.1073/pnas.1109389108
  47. Jordan, C.S. (1876) A partial synopsis of the fishes of Upper Georgia. Annals of the Lyceum of Natural History of New York, 11, 307–377. https://doi.org/10.1111/j.1749-6632.1876.tb00086.x
  48. Kilian, A., Wenzl, P., Huttner, E., Carling, J., Xia, L., Blois, H., Caig, V., Heller-Uszynska, K., Jaccoud, D., Hopper, C., Aschenbrenner-Kilian, M., Evers, M., Peng, K., Cayla, C., Hok, P. & Uszynski, G. (2012) Diversity Arrays Technology: A Generic Genome Profiling Technology on Open Platforms. In: Pompanon, F. & Bonin, A. (Eds.), Data Production and Analysis in Population Genomics. Methods and Protocols. Vol. 888. Methods in Molecular Biology. Humana Press, Totowa, New Jersey, pp. 67–89. https://doi.org/10.1007/978-1-61779-870-2_5
  49. Kim, D., Bauer, B.H. & Near, T.J. (2022a) Introgression and species delimitation in the Longear Sunfish Lepomis megalotis (Teleostei: Percomorpha: Centrarchidae). Systematic Biology, 71, 273–285. https://doi.org/10.1093/sysbio/syab029
  50. Kim, D., Taylor, A.T. & Near, T.J. (2022b) Phylogenomics and species delimitation of the economically important Black Basses (Micropterus). Scientific Reports, 12 (9113), 1–14. https://doi.org/10.1038/s41598-022-11743-2
  51. Kim, K.S. & Roe, K.J. (2021) Genome-wide SNPs redefines species boundaries and conservation units in the freshwater mussel genus Cyprogenia of North America. Scientific Reports, 11 (10752), 1–16. https://doi.org/10.1038/s41598-021-90325-0
  52. Leaché, A.D., Zhu, T., Rannala, B. & Yang, Z. (2019) The spectre of too many species. Systematic Biology, 68, 168–181. https://doi.org/10.1093/sysbio/syy051
  53. Lundberg, J.G., Kottelat, M., Smith, G.R., Stiassny, M.L.J. & Gill, A.C. (2000) So many fishes, so little time: An overview of recent ichthyological discovery in continental waters. Annals of the Missouri Botanical Garden, 87, 26–62. https://doi.org/10.2307/2666207
  54. Mayden, R.L. (1985) Biogeography of Ouachita Highland Fishes. The Southwestern Naturalist, 30, 195–211. https://doi.org/10.2307/3670734
  55. Mayden, R.L. (1987) Pleistocene Glaciation And Historical Biogeography Of North American Central-Highland Fishes. In: Johnson, W.C. (Ed.), Guidebook Series 5. Quaternary Environments of Kansas. Kansas Geological Survey, Lawrence, Kansas, pp. 141–151.
  56. Mayden, R.L. (1988) Vicariance biogeography, parsimony, and evolution in north american freshwater fishes. Systematic Zoology, 37, 329–355. https://doi.org/10.2307/2992197
  57. Mayr, E. (1968) The role of systematics in biology. Science, 159, 595–599. https://doi.org/10.1126/science.159.3815.595
  58. Mayr, E. (1970) Populations, Species, and Evolution: An Abridgment of Animal Species and Evolution. Harvard University Press, Cambridge, MA, 480 pp.
  59. Mengel, R.M. (1970) The North American Central Plains as an Isolating Agent in Bird Speciation. In: Dort Jr, W. & Jones, J.K. (Eds.), Pleistocene and Recent Environments of the Central Great Plains. University of Kansas Press, Lawrence, Kansas, pp. 279–340.
  60. Mijangos, J.L., Gruber, B., Berry, O., Pacioni, C. & Georges, A. (2022) dartR v2: An accessible genetic analysis platform for conservation, ecology and agriculture. Methods in Ecology and Evolution, 13, 2150–2158. https://doi.org/10.1111/2041-210X.13918
  61. Miller, M.A., Pfeiffer, W. & Schwartz, T. (2011) The CIPRES science gateway: a community resource for phylogenetic analyses. TG ‘11: Proceedings of the 2011 TeraGrid Conference: Extreme Digital Discovery, 41, 1–8. https://doi.org/10.1145/2016741.2016785
  62. Moyle, P.B. & Campbell, M.A. (2022) Cryptic species of freshwater sculpin (Cottidae: Cottus) in California, USA. Zootaxa, 5154 (5), 501–527. https://doi.org/10.11646/zootaxa.5154.5.1
  63. Near, T.J., France, E.D., Keck, B.P. & Harrington, R.C. (2016) Systematics and taxonomy of the Snubnose Darter, Etheostoma simoterum (Cope). Bulletin of the Peabody Museum of Natural History, 57, 127–145. https://doi.org/10.3374/014.057.0203
  64. Near, T.J. & Keck, B.P. (2005) Dispersal, vicariance, and timing of diversification in Nothonotus darters. Molecular Ecology, 14, 3485–3496. https://doi.org/10.1111/j.1365-294X.2005.02671.x
  65. Near, T.J., MacGuigan, D.J., Boring, E.L., Simmons, J.W., Albanese, B., Keck, B.P., Harrington, R.C. & Dinkins, G.R. (2021) A new species of Bridled Darter endemic to the Etowah River system in Georgia (Percidae: Etheostomatinae: Percina). Bulletin of the Peabody Museum of Natural History, 62, 15–42. https://doi.org/10.3374/014.062.0102
  66. Near, T.J., Page, L.M. & Mayden, R.L. (2001) Intraspecific phylogeography of Percina evides (Percidae: Etheostomatinae): An additional test of the Central Highlands pre-Pleistocene vicariance hypothesis. Molecular Ecology, 10, 2235–2240. https://doi.org/10.1046/j.1365-294X.2001.01362.x
  67. Near, T.J., Simmons, J.W., Mollish, J.M., Correa, M.A., Benavides, E., Harrington, R.C. & Keck, B.P. (2017) A new species of logperch endemic to Tennessee (Percidae: Etheostomatinae: Percina). Bulletin of the Peabody Museum of Natural History, 58, 287–309. https://doi.org/10.3374/014.058.0203
  68. Near, T.J. & Thacker, C.E. (2024) Phylogenetic Classification of living and fossil ray-finned fishes (Actinopterygii). Bulletin of the Peabody Museum of Natural History, 65, 3–302. https://doi.org/10.3374/014.065.0101
  69. Nguyen, L.-T., Schmidt, H.A., von Haeseler, A. & Minh, B.Q. (2015) IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32, 268–274. https://doi.org/10.1093/molbev/msu300
  70. Noss, R.F., Platt, W.J., Sorrie, B.A., Weakley, A.S., Means, D.B., Costanza, J. & Peet, R.K. (2015) How global biodiversity hotspots may go unrecognized: Lessons from the North American Coastal Plain. Diversity and Distributions, 21, 236–244. https://doi.org/10.1111/ddi.12278
  71. O’Donnell, R.P., Bruhl, J.J., Telford, I.R.H., Wilson, T.C., Zimmer, H.C., Taseski, G.M. & Andrew, R.L. (2023) Molecular and morphological analyses support recognition of Prostanthera volucris (Lamiaceae), a new species from the Central Tablelands of New South Wales. Australian Systematic Botany, 36 (1), 1–20.
  72. https://doi.org/10.1071/SB22017
  73. Outlaw, D.C. & Ricklefs, R.E. (2014) Species limits in avian malaria parasites (Haemosporida): How to move forward in the molecular era. Parasitology, 141, 1223–1232. https://doi.org/10.1017/S0031182014000560
  74. Pflieger, W.L. (1971) A distributional study of Missouri fishes. University of Kansas Publication, Museum of Natural History, 20 (3), 226–570.
  75. Pflieger, W.L. (1997) The fishes of Missouri. Missouri Department of Conservation, Jefferson City, Missouri, 372 pp.
  76. Poulin, R., Presswell, B. & Bennett, J. (2022) Male-biased selection of holotypes in parasite taxonomy: Is it justified? Trends in Parasitology, 38 (11), 926–929. https://doi.org/10.1016/j.pt.2022.08.003
  77. Powers, S.L., Kuhajda, B.R. & Ahlbrand, S.E. (2012) Systematics of the Etheostoma cinereum (Teleostei: Percidae) species complex (subgenus Allohistium). Zootaxa, 3277 (1), 43–55. https://doi.org/10.11646/zootaxa.3277.1.3
  78. Powers, S.L. & Mayden, R.L. (2007) Systematics, evolution and biogeography of the Etheostoma simoterum species complex (Percidae: Subgenus Ulocentra). Bulletin of the Alabama Museum of Natural History, 25, 1–23.
  79. Powers, S.L., Mayden, R.L. & Etnier, D.A. (2004) Conservation genetics of the ashy darter, Etheostoma cinereum (Percidae: subgenus Allohistium), in the Cumberland and Tennessee Rivers of the southeastern United States. Copeia, 2004, 632–637. https://doi.org/10.1643/CG-03-165R1
  80. R Core Team (2024) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. [program]
  81. Raman, H., Raman, R., Kilian, A., Detering, F., Carling, J., Coombes, N., Diffey, S., Kadkol, G., Edwards, D., McCully, M., Ruperao, P., Parkin, I.A.P., Batley, J., Luckett, D.J. & Wratten, N. (2014) Genome-wide delineation of natural variation for pod shatter resistance in Brassica napus. PLoS ONE, 9, e101673. https://doi.org/10.1371/journal.pone.0101673
  82. Rambaut, A., Drummond, A.J., Xie, D., Baele, G. & Suchard, M.A. (2018) Posterior summarization in bayesian phylogenetics using Tracer 1.7. Systematic Biology, 67, 901–904. https://doi.org/10.1093/sysbio/syy032
  83. Rogers, J.S. & Cashner, R.C. (1987) Genetic Variation, Divergence, and Relationships in the Subgenus Xenisma of the Genus Fundulus. In: Matthews, W.J. & Heins, D.C. (Eds.), Community and Evolutionary Ecology of North American Stream Fishes. University of Oklahoma Press, Norman, Oklahoma, pp. 421–437.
  84. Sabaj, M.H. (2020) Codes for Natural History Collections in Ichthyology and Herpetology. Copeia, 108 (3), 593–669. https://doi.org/10.1643/ASIHCODONS2020
  85. Sansaloni, C., Petroli, C., Jaccoud, D., Carling, J., Detering, F., Grattapaglia, D. & Kilian, A. (2011) Diversity Arrays Technology (DArT) and next-generation sequencing combined: Genome-wide, high throughput, highly informative genotyping for molecular breeding of Eucalyptus. BMC Proceedings, 5 (P54), 1–2. https://doi.org/10.1186/1753-6561-5-S7-P54
  86. Simmons, J. (2021) Distribution, Status, and Life History Aspects of Two Rare Logperches, Percina burtoni and Percina apina. Southeastern Fishes Council Proceedings, 1 (61), 1–45.
  87. Simons, A.M. (2004) Phylogenetic relationships in the genus Erimystax (Actinopterygii: Cyprinidae) based on the cytochrome b gene. Copeia, 2004 (2), 351–356. https://doi.org/10.1643/CG-02-289R2
  88. Starnes, W.C. & Etnier, D.A. (1986) Drainage Evolution and Fish Biogeography of the Tennessee and Cumberland Rivers Drainage Realm. In: Wiley, E.O. & Hocutt, C.H. (Eds.), The Zoogeography of North American Freshwater Fishes. Wiley Interscience, New York, NY, pp. 325–361.
  89. Storer, D.H. (1846) A Synopsis of the Fishes of North America. Metcalf, Cambridge, 316 pp.
  90. Strange, R.M. & Burr, B.M. (1997) Intraspecific phylogeography of North American highland fishes: A test of the pleistocene vicariance hypothesis. Evolution, 51, 885–897. https://doi.org/10.1111/j.1558-5646.1997.tb03670.x
  91. Thomerson, J.E., Rogers, W.A., Yamaguti, S. & Kamegai, S. (1969) Variation and relationship of the studfishes, Fundulus catenatus and Fundulus stellifer (Cyprinodontidae, Pisces). Tulane Studies in Zoology and Botany, 16, 1–22.
  92. Titus, B.M., Daly, M., Hamilton, N., Berumen, M.L. & Baeza, J.A. (2018) Global species delimitation and phylogeography of the circumtropical “sexy shrimp” Thor amboinensis reveals a cryptic species complex and secondary contact in the Indo-West Pacific. Journal of Biogeography, 45, 1275–1287. https://doi.org/10.1111/jbi.13231
  93. U.S. Fish and Wildlife Service (2019) Endangered and Threatened Wildlife and Plants; Endangered Species Status for Barrens Topminnow. U.S. Fish and Wildlife Service, Atlanta, Georgia, Available from : https://www.federalregister.gov/documents/2019/10/21/2019-22857/endangered-and-threatened-wildlife-and-plants-endangered-species-status-for-barrens-topminnow (accessed 26 June 2024)
  94. Vences, M., Miralles, A. & Dufresnes, C. (2024) Next‐generation species delimitation and taxonomy: Implications for biogeography. Journal of Biogeography, 2024, 1–14. https://doi.org/10.1111/jbi.14807
  95. Watkins, A. (2024) Androcentrism in Biological Typing. Hypatia, 39 (4), 1–24. https://doi.org/10.1017/hyp.2023.121
  96. Wiley, E.O. & Lieberman, B.S. (2011) Phylogenetics: Theory and Practice of Phylogenetic Systematics. John Wiley & Sons, Hoboken, New Jersey, 444 pp.
  97. Wiley, E.O. & Mayden, R.L. (1985) Species and speciation in phylogenetic systematics, with examples from the North American fish fauna. Annals of the Missouri Botanical Garden, 72, 596–635. https://doi.org/10.2307/2399217
  98. Williams, J.D. & Etnier, D.A. (1982) Description of a new species, Fundulus julisia, with a redescription of Fundulus albolineatus and a diagnosis of subgenus Xenisma. Occasional papers of the Museum of Natural History, University of Kansas, 102, 1–20.
  99. Wright, S. (1978) Evolution and the Genetics of Populations Vol. 4. University of Chicago Press, Chicago, Illinois, 590 pp.
  100. Wood, J.E., Harrington, R.C., Alley, Z.D., Thomas, M.R., Simmons, J.W. & Near, T.J. (2023) A new species of Spottail Darter endemic to the Clarks River in Kentucky and Tennessee (Percidae: Etheostomatinae: Etheostoma). Bulletin of the Peabody Museum of Natural History, 64, 11–37. https://doi.org/10.3374/014.064.0102
  101. Zhang, C., Zhang, D.-X., Zhu, T. & Yang, Z. (2011) Evaluation of a bayesian coalescent method of species delimitation. Systematic Biology, 60, 747–761. https://doi.org/10.1093/sysbio/syr071