Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2025-03-24
Page range: 525-536
Abstract views: 151
PDF downloaded: 7

A light in the dark: DNA barcoding provides new data about the taxonomy of the Italian Luciola (Coleoptera, Lampyridae) fireflies

Research Institute on Terrestrial Ecosystems IRET; National Research Council CNR; Via Madonna del Piano 10; Sesto Fiorentino (Florence); I-50019.; National Biodiversity Future Center; 90133 Palermo; Italy
Research Institute on Terrestrial Ecosystems IRET; National Research Council CNR; Via Madonna del Piano 10; Sesto Fiorentino (Florence); I-50019.
Research Institute on Terrestrial Ecosystems IRET; National Research Council CNR; Via Madonna del Piano 10; Sesto Fiorentino (Florence); I-50019.
Department of Ecological and Biological Sciences; University of Tuscia; Largo dell’Università 1; Viterbo; I-01100.
Department of Veterinary Sciences; University of Pisa; Viale delle Piagge 2; Pisa; I-56124.
Center of Plant Sciences; Sant’Anna School of Advanced Studies; Pisa; I-56124.
Department of Chemistry; Life Sciences & Environmental Sustainability; University of Parma; Parma; I-43124.
Research Institute on Terrestrial Ecosystems IRET; National Research Council CNR; Via Madonna del Piano 10; Sesto Fiorentino (Florence); I-50019.
Research Institute on Terrestrial Ecosystems IRET; National Research Council CNR; Via Madonna del Piano 10; Sesto Fiorentino (Florence); I-50019.; National Biodiversity Future Center; 90133 Palermo; Italy
Coleoptera cytochrome oxidase endemic species insect conservation Lampyridae mitochondrial DNA revised taxonomy

Abstract

Environmental pollution and agricultural intensification are threatening insects worldwide, and reliable taxonomy is pivotal to protect these taxa, particularly endemic species. Despite their wide distribution, lampyrid beetles (Lampyridae)—well-known as fireflies—are poorly studied in terms of taxonomy, particularly in Europe. Accordingly, as for almost all insects, the description of most species is only based on a few morphological featuresSince genetic analyses can provide valuable support in taxonomic studies, in this work, we investigated the species identity of an Italian endemic firefly, Luciola pedemontana (Curtis, 1843), with respect to other congeneric species, namely Luciola italica (Linnaeus, 1767) and Luciola lusitanica (Charpentier, 1825) by applying Barcoding technique. Particularly, L. pedemontana has been for long considered as a synonym of L. lusitanica or as a subspecies of L. italica. Italy hosts the highest diversity of firefly species in Europe, but the Luciola inter-specific phylogenetic relationships and species delimitations are still poorly known. With the aim to assist morphological analyses in the taxonomic characterization of species of the genus Luciola in Italy, we sequenced the cytochrome oxidase subunit I gene (COI) fragment of 40 individuals from 18 sites in Central Italy. Our analysis confirmed L. pedemontana as a well-supported monophyletic clade and as the sister taxon of L. italica. Furthermore, a low intraspecific genetic variation was found between L. lusitanica and L. pedemontana and between Luciola unmunsana + Luciola papariensis. Genetic data obtained for the Luciola species can help to improve conservation measures for L. pedemontana, strongly required to protect this Italian endemic taxon, which is currently threatened by light pollution and environmental alterations.

 

References

  1. Ahmed, S.S. (2022) DNA barcoding in plants and animals, a critical review. Preprints, 2022010310, 1–28. https//doi.org/10.20944/preprints202201.0310.v1
  2. Ancillotto, L. & Labadessa, R. (2023) Can protected areas and habitats preserve the vulnerable predatory bush cricket Saga pedo? Journal of Insect Conservation, 27, 615–624. https//doi.org/10.1007/s10841-023-00484-w
  3. Ancillotto, L., Mori, E., Bosso, L., Agnelli, P. & Russo, D. (2019) The Balkan long-eared bat (Plecotus kolombatovici) occurs in Italy—first confirmed record and potential distribution. Mammalian Biology, 96, 61–67. https//doi.org/10.1016/j.mambio.2019.03.014
  4. Bae, J.S., Kim, I., Sohn, H.D. & Jin, B.R. (2004) The mitochondrial genome of the firefly, Pyrocoelia rufa, complete DNA sequence, genome organization, and phylogenetic analysis with other insects. Molecular Phylogenetics and Evolution, 32, 978–985. https//doi.org/10.1016/j.ympev.2004.03.009
  5. Ballantyne, L.A. (2008) Pygoluciola satoi, a new species of the rare Southeast Asian firefly genus Pygoluciola Wittmer (Coleoptera, Lampyridae, Luciolinae) from the Philippines. Biochemistry, 53, 6287–6289. https://doi.org/10.1021/bi501202u
  6. Bocakova, M., Campello-Gonçalves, L. & Da Silveira, L.F.L. (2022) Phylogeny of the new subfamily Cladodinae, neotenic fireflies from the Neotropics (Coleoptera, Lampyridae). Zoological Journal of the Linnean Society, 195, 1181–1199. https://doi.org/10.1093/zoolinnean/zlab091
  7. Bonaduce, A. & Sabelli, B. (2006) The Lampyridae from the Nature Reserve Bosco della Fontana (Marmirolo, Mantua). Bollettino del Museo Civico di Storia Naturale di Verona, 30, 155–159.
  8. Branchini, B.R., Southworth, L., Fontaine, D.M., Davis, A.L., Behney, C.E. & Murtiashaw, M.H. (2014) A Photinus pyralis and Luciola italica chimeric firefly luciferase produces enhanced bioluminescence. Biochemistry, 53, 6287–6289. https://doi.org/10.1021/bi501202u
  9. Camerini, G. (2022) Habitat selection by Luciola pedemontana (Coleoptera, Lampyridae) in a lowland landscape in Northern Italy, implication for conservation. Biologia Ambientale, 36, 64–72.
  10. Catalán, A., Gygax, D., Rodríguez-Montes, L., Hinzke, T., Hoff, K.J. & Duchen, P. (2024) Two novel genomes of fireflies with different degrees of sexual dimorphism reveal insights into sex-biased gene expression and dosage compensation. Communications Biology, 7, 906. https://doi.org/10.1038/s42003-024-06550-6
  11. Chow, A.T., Chong, J.H., Cook, M. & White, D. (2014) Vanishing fireflies, a citizen-science project promoting scientific inquiry and environmental stewardship. Science Education and Civic Engagement, 6, 23–31.
  12. Clement, M., Posada, D. & Crandall, K.A. (2000) TCS, a computer program to estimate gene genealogies. Molecular Ecology, 9, 1657–1659. https://doi.org/10.1046/j.1365-294x.2000.01020.x
  13. Darriba, D., Taboada, G.L., Doallo, R. & Posada, D. (2012) jModelTest 2, more models, new heuristics and high-performance computing. Nature Methods, 9, 772. https://doi.org/10.1038/nmeth.2109
  14. Day, J.C., Bonaduce, A., Sabelli, B. & De Cock, R. (2014) Phylogeography of European fireflies, five species in one. Proceedings of International Firefly Symposium, Gainesville, Florida, USA, 11–15 August, 1.
  15. de Jong, Y., Verbeek, M., Michelsen, V., de Place Bjørn, P., Los, W., Steeman, F., Hagedorn, G., Wetzel, F.T., Glöcker, F., Kroupa, A., Korb, G., Hoffmann, A., Häuser, C., Kohlbecker, A., Müller, A., Güntsch, A., Stoev, P. & Penev, L. (2014) Fauna Europaea—all European animal species on the web. Biodiversity Data Journal, 2, e4034. https://doi.org/10.3897/BDJ.2.e4034
  16. Del Cerro, I., Marmi, J., Ferrando, A., Chashchin, P., Taberlet, P. & Bosch, M. (2010) Nuclear and mitochondrial phylogenies provide evidence for four species of Eurasian badgers (Carnivora). Zoologica Scripta, 39, 415–425. https://doi.org/10.1111/j.1463-6409.2010.00436.x
  17. dos Santos, A.M., Cabezas, M.P., Tavares, A.I., Xavier, R. & Branco, M. (2016) tcsBU, a tool to extend TCS network layout and visualization. Bioinformatics, 32, 627–628. https://doi.org/10.1093/bioinformatics/btv636
  18. Elyasigorji, Z., Izadpanah, M., Hadi, F. & Zare, M. (2023) Mitochondrial genes as strong molecular markers for species identification. The Nucleus, 66, 81–83. https://doi.org/10.1007/s13237-022-00393-4
  19. Fallon, C.E., Walker, A.C., Lewis, S., Cicero, J., Faust, L., Heckscher, C.M., Perez-Hernandez, C.X., Pfeiffer, B. & Jepsen, S. (2021) Evaluating firefly extinction risk, initial red list assessments for North America. PloS One, 16, e0259379. https://doi.org/10.1371/journal.pone.0259379
  20. Fanti, F. (2022) Guida alle lucciole d’Italia. Lampyridae. Effigi Editions, Arcidosso (Grosseto), Italy, 478 pp.
  21. Fanti, F. (2024) Lampyridae, history of the type species of the genus Luciola, updated checklist of North African fireflies, and other taxonomic and faunistic notes. Baltic Journal of Coleopterology, 24 (1), 43–64.
  22. Ferreira, V.S., Keller, O., Branham, M.A. & Ivie, M.A. (2019) Molecular data support the placement of the enigmatic Cheguevaria as a subfamily of Lampyridae (Insecta, Coleoptera). Zoological Journal of the Linnean Society, 187, 1253–1258. https://doi.org/10.1093/zoolinnean/zlz073
  23. Ferreira, V.S., Keller, O. & Branham, M.A. (2020) Multilocus phylogeny support the nonbioluminescent firefly Chespirito as a new subfamily in the Lampyridae (Coleoptera, Elateroidea). Insect Systematics and Diversity, 4 (2), 1–13. https://doi.org/10.1093/isd/ixaa014
  24. Ferreira, V.S., Keller, O., Barbosa, F.F. & Ivie, M.A. (2024) Integrative systematics of Cheguevaria Kazantsev, 2007 (Coleoptera, Lampyridae, Cheguevariinae) identifies genetic stability in color-polymorphic individuals and a disjoint relationship with Amydetinae. Insect Systematics and Diversity. 8 (6), 1–25. https://doi.org/10.1093/isd/ixae033
  25. Folmer, O., Black, M., Hoeh,W., Lutz, R. & Vrijenhoek, R. (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3, 294–299. https://doi.org/10.1371/journal.pone.0013102
  26. Gouy, M., Tannier, E., Comte, N. & Parsons, D.P. (2021) Seaview version 5, a multiplatform software for multiple sequence alignment, molecular phylogenetic analyses, and tree reconciliation. In: Katoh, K. (Ed.), Multiple Sequence Alignment, Methods and Protocols. Springer Editions, New York, New York, pp. 241–260. https://doi.org/10.1007/978-1-0716-1036-7_15
  27. Gurcel, K., Chittaro, Y., Sanchez, A. & Rieger, I. (2020) Contribution à la connaissance des lucioles et lampyres de Suisse et observation de Luciola lusitanica Charpentier, 1825 à Genève (Coleoptera, Lampyridae). Entomo Helvetica, 13, 81–96.
  28. Hendrich, L., Morinière, J., Haszprunar, G., Hebert, P.D., Hausmann, A., Köhler, F. & Balke, M. (2015) A comprehensive DNA barcode database for Central European beetles with a focus on Germany, adding more than 3500 identified species to BOLD. Molecular Ecology Resources, 15, 795–818. https://doi.org/10.1111/1755-0998.12354
  29. Huang, W., Xie, X., Huo, L., Liang, X., Wang, X. & Chen, X. (2020) An integrative DNA barcoding framework of ladybird beetles (Coleoptera, Coccinellidae). Scientific Reports, 10, 10063. https://doi.org/10.1038/s41598-020-66874-1
  30. Jusoh, W.F., Ballantyne, L. & Chan, K.O. (2020) DNA-based species delimitation reveals cryptic and incipient species in synchronous flashing fireflies (Coleoptera, Lampyridae) of Southeast Asia. Biological Journal of the Linnean Society, 130, 520–532. https://doi.org/10.1093/biolinnean/blaa072
  31. Jusoh, W.F., Ballantyne, L., Chan, S.H., Wong, T.W., Yeo, D., Nada, B. & Chan, K.O. (2021) Molecular systematics of the firefly genus Luciola (Coleoptera, Lampyridae, Luciolinae) with the description of a new species from Singapore. Animals, 11, 687. https://doi.org/10.3390/ani11030687
  32. Lukhtanov, V.A., Sourakov, A., Zakharov, E.V. & Hebert, P.D. (2009) DNA barcoding Central Asian butterflies, increasing geographical dimension does not significantly reduce the success of species identification. Molecular Ecology Resources, 9, 1302–1310. https://doi.org/10.1111/j.1755-0998.2009.02577.x
  33. Lewis, S.M., Wong, C.H., Owens, A.C., Fallon, C., Jepsen, S., Thancharoen, A., Wu, C., De Cock, R., Novák, M., López-Palafox, T., Khoo, V. & Reed, J.M. (2020) A global perspective on firefly extinction threats. BioScience, 70, 157–167. https://doi.org/10.1093/biosci/biz157
  34. Lewis, S.M., Thancharoen, A., Wong, C.H., López-Palafox, T., Santos, P.V., Wu, C., Faust, L., De Cock, R., Owens, A.C.S.,, Lemelin R.H., Gurung, H., Jusoh, W.F.A., Trujillo, D., You, V., Lopez, P.J., Jaikla, S. & Reed, J.M. (2021) Firefly tourism, advancing a global phenomenon toward a brighter future. Conservation Science and Practice, 3, e391. https://doi.org/10.1111/csp2.391
  35. Lorenzini, R. & Garofalo, L. (2015) Insights into the evolutionary history of Cervus (Cervidae, tribe Cervini) based on Bayesian analysis of mitochondrial marker sequences, with first indications for a new species. Journal of Zoological Systematics and Evolutionary Research, 53, 340–349. https://doi.org/10.1111/jzs.12104
  36. Ma, Z., Ren, J. & Zhang, R. (2022) Identifying the genetic distance threshold for Entiminae (Coleoptera, Curculionidae) species delimitation via COI barcodes. Insects, 13, 261. https://doi.org/10.3390/insects13030261
  37. Maeda, J., Kato, D.I., Arima, K., Ito, Y., Toyoda, A. & Noguchi, H. (2017) The complete mitochondrial genome sequence and phylogenetic analysis of Luciola lateralis, one of the most famous fireflies in Japan (Coleoptera, Lampyridae). Mitochondrial DNA Part B, 2, 546–547. https://doi.org/10.1080/23802359.2017.1365640
  38. Magoga, G., Sahin, D.C., Fontaneto, D. & Montagna, M. (2018) Barcoding of Chrysomelidae of Euro-Mediterranean area, efficiency and problematic species. Scientific Reports, 8, 13398. https://doi.org/10.1038/s41598-018-31545-9
  39. Martin, G.J., Branham, M.A., Whiting, M.F. & Bybee, S.M. (2017) Total evidence phylogeny and the evolution of adult bioluminescence in fireflies (Coleoptera, Lampyridae). Molecular Phylogenetics and Evolution, 107, 564–575. https://doi.org/10.1016/j.ympev.2016.12.017
  40. Martin, G.J., Stanger-Hall, K.F., Branham, M.A., Da Silveira, L.F.L., Lower, S.E., Hall, D.W., Li, X.Y., Lemmon, A.R., Lemmon, E.M. & Bybee, S.M. (2019) Higher-level phylogeny and reclassification of Lampyridae (Coleoptera, Elateroidea). Molecular Phylogenetics and Evolution, 135, 51–65. https://doi.org/10.1016/j.ympev.2019.02.004
  41. Milana, V., Šanda, R., Vukić, J., Ciccotti, E., Riccato, F., Petrosino, G. & Rossi, A.R. (2021) Far from home: genetic variability of Knipowitschia sp. from Italy revealed unexpected species in coastal lagoons of the Tyrrhenian coast. Estuarine, Coastal and Shelf Science, 251, 107260. https://doi.org/10.1016/j.ecss.2021.107260
  42. Mohd Salleh, M.H., Esa, Y. & Mohamed, R. (2023) Global terrapin character-based DNA barcodes: assessment of the mitochondrial COI gene and conservation status revealed a putative cryptic species. Animals, 13, 1720. https://doi.org/10.3390/ani13111720
  43. Mori, E., Brambilla, M., Ramazzotti, F., Ancillotto, L., Mazza, G., Russo, D., Amori, G. & Galimberti, A. (2020) In or out of the checklist? DNA barcoding and distribution modelling unveil a new species of Crocidura shrew for Italy. Diversity, 12, 380. https://doi.org/10.3390/d12100380
  44. Owens, A., Van den Broeck, M., De Cock, R. & Lewis, S.M. (2022) Behavioral responses of bioluminescent fireflies to artificial light at night. Frontiers in Ecology and Evolution, 10, 946640. https://doi.org/10.3389/fevo.2022.946640
  45. Padial, J.M. & De la Riva, I. (2006) Taxonomic inflation and the stability of species lists: the perils of ostrich’s behavior. Systematic Biology, 55, 859–867. https://doi.org/10.1080/1063515060081588
  46. Pélissié, M., Nabholz, B., Labadessa, R. & Ancillotto, L. (2023) Hidden in plain sight: unveiling the distributions of green‐winged grasshoppers (Aiolopus spp.) with citizen‐science data. Journal of Zoology, 320, 301–307. https://doi.org/10.1111/jzo.13086
  47. Pentinsaari, M., Hebert, P.D. & Mutanen, M. (2014) Barcoding beetles: a regional survey of 1,872 species reveals high identification success and unusually deep interspecific divergences. PLoS One, 9, e108651. https://doi.org/10.1371/journal.pone.0108651
  48. Picchi, M.S., Avolio, L., Azzani, L., Brombin, O. & Camerini, G. (2013) Fireflies and land use in an urban landscape: the case of Luciola italica L. (Coleoptera: Lampyridae) in the city of Turin. Journal of Insect Conservation, 17, 797–805. https://doi.org/10.1007/s10841-013-9562-z
  49. Porta, A. (1929) Fauna Coleopterorum Italica. Vol. III. Diversicornia (III Tribù, Lampyridini). Stabilimento Tipografico Piacentino Editions, Piacenza, 312 pp.
  50. Posada, D. (2003) Using MODELTEST and PAUP* to select a model of nucleotide substitution. Current Protocols in Bioinformatics, 1, 5–6. https://doi.org/10.1002/0471250953.bi0605s00
  51. Puillandre, N., Lambert, A., Brouillet, S. & Achaz, G. (2012) ABGD, automatic barcode gap discovery for primary species delimitation. Molecular Ecology, 21, 1864–1877. https://doi.org/10.1111/j.1365-294X.2011.05239.x
  52. Ratnasingham, S. & Hebert, P.D.N. (2013) A DNA-based registry for all animal species: the Barcode Index Number (BIN) System. PLoS One, 8, e66213. https://doi.org/10.1371/journal.pone.0066213
  53. Raupach, M.J., Astrin, J.J., Hannig, K., Peters, M.K., Stoeckle, M.Y. & Wägele, J.W. (2010) Molecular species identification of Central European ground beetles (Coleoptera: Carabidae) using nuclear rDNA expansion segments and DNA barcodes. Frontiers in Zoology, 7, 26. https://doi.org/10.1186/1742-9994-7-26
  54. Rohland, N., Reich, D., Mallick, S., Meyer, M., Green, R.E., Georgiadis, N.J., Roca, A.L. & Hofreiter, M. (2010) Genomic DNA sequences from mastodon and woolly mammoth reveal deep speciation of forest and savanna elephants. PLoS Biology, 8, e1000564. https://doi.org/10.1371/journal.pbio.1000564
  55. Roza, A.S., Mermudes, J.R.M. & Silveira, L.F.L.D. (2022) A new genus and two new species of fireflies from South America (Lampyridae, Lampyrinae, Photinini). Zoological Journal of the Linnean Society, 196, 1–17. https://doi.org/10.1093/zoolinnean/zlab028
  56. Rozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J.C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S.E. & Sánchez-Gracia, A. (2017) DnaSP 6, DNA sequence polymorphism analysis of large datasets. Molecular Biology and Evolution, 34, 3299–3302. https://doi.org/10.1093/molbev/msx248
  57. Saito, S., Kojima, W. & Yuma, M. (2022) Urbanization and firefly occurrence, a case study on Luciola cruciata (Coleoptera, Lampyridae) in the Nara Basin, Japan. Journal of Insect Conservation, 26, 105–116. https://doi.org/10.1007/s10841-021-00346-0
  58. Saitou, N. & Nei, M. (1987) The neighbor-joining method, a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406–425.
  59. Say, T. (1835) Descriptions of new species of coleopterous insects inhabiting North America. Boston Journal of Natural History 1, 151–203.
  60. Schneider, C.A., Rasband, W.S. & Eliceiri, K.W. (2012) NIH Image to ImageJ, 25 years of image analysis. Nature Methods, 9, 671–675. https://doi.org/10.1038/nmeth.2089
  61. Stamatakis, A. (2014) RAxML version 8, a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30, 1312–1313. https://doi.org/10.1093/bioinformatics/btu033
  62. Tamura, K., Stecher, G. & Kumar, S. (2021) MEGA11, Molecular Evolutionary Genetics Analysis version 11. Molecular Biology and Evolution, 38, 3022–3027. https://doi.org/10.1093/molbev/msab120
  63. Turin, H., Penev, L. & Casale, A. (2003) The genus Carabus in Europe, a synthesis. Pensoft Publishers, Sofia-Moscow, 511 pp.
  64. Vogler, A.P. & DeSalle, R. (1994) Diagnosing units of conservation management. Conservation Biology, 8, 354–363. https://doi.org/10.1046/j.1523-1739.1994.08020354.x
  65. Zhang, J., Kapli, P., Pavlidis, P. & Stamatakis, A. (2013) A general species delimitation method with applications to phylogenetic placements. Bioinformatics, 29, 2869–2876. https://doi.org/10.1093/bioinformatics/btt499
  66. Zhang, A.B., Muster, C., Liang, H.B., Zhu, C.D., Crozier, R.H., Wan, P. & Feng, J. (2012) A fuzzy-set-theory-based approach to analyse species membership in DNA barcoding. Molecular Ecology, 21, 1848–1863. https://doi.org/10.1111/j.1365-294X.2011.05205.x