Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2025-04-01
Page range: 29-46
Abstract views: 226
PDF downloaded: 8

Evolutionary history of the polymorphic Coatzacoalcos River endemic Thorichthys panchovillai (Cichliformes: Cichlidae)

Field Museum of Natural History (FMNH); Chicago; Illinois; United States of America
CONAHCYT-Facultad de Ciencias Naturales; Universidad Autónoma de Querétaro (FCN-UAQ); Santiago de Querétaro; Mexico
Facultad de Biología; Universidad Michoacana de San Nicolás de Hidalgo; Morelia; Michoacán; Mexico; Laboratorio de Biología Acuática; Facultad de Biología; Universidad Michoacana de San Nicolás de Hidalgo; Morelia; Michoacán; Mexico
Southeastern Louisiana University. Hammond; Louisiana; United States of America
Laboratorio de Biología Acuática; Facultad de Biología; Universidad Michoacana de San Nicolás de Hidalgo; Morelia; Michoacán; Mexico
Cordillera Karakorum 223B; Lomas 3a sección; San Luis Potosi; SLP; 78216; Mexico
Southeastern Louisiana University. Hammond; Louisiana; United States of America
Field Museum of Natural History (FMNH); Chicago; Illinois; United States of America
Pisces northern Neotropics phylogeny polymorphism mitochondrial DNA

Abstract

Cichlids of the genus Thorichthys are a morphologically diverse clade of nine species occurring from Mexico south to the Motagua River in Guatemala and Honduras. Our understanding of species relationships within Thorichthys and other genera of Northern Neotropical cichlids has improved in recent years; however, phylogenetic placement of some species, as well as population-level variation, remains understudied. Thorichthys panchovillai is a polymorphic species endemic to the Coatzacoalcos River in the Atlantic slope of Mexico. The species was described from the upper reaches of this river, and since that time phenotypic variation in coloration and body shape has been observed. However, the species has never been included in a molecular phylogenetic study to understand its evolutionary relationships within the genus and better relate the observed morphological polymorphism to genetic patterns within this species. In this study we use mitochondrial data to study the phylogenetic placement of T. panchovillai in the context of all other species of Thorichthys. Results show that spatially segregated haplotypes correspond to two main morphotypes of T. panchovillai and allow for the proposal of hypotheses regarding maintenance of this polymorphism in the Coatzacoalcos River.

 

References

  1. Alda, F., Ludt, W.B., Elías, D.J., McMahan, C.D. & Chakrabarty, P. (2021) Comparing ultraconserved elements and exons for phylogenomic analyses of Middle American cichlids: when data agree to disagree. Genome Biology and Evolution, 13 (8), evab161, 1–19. https://doi.org/10.1093/gbe/evab161
  2. Arbour, J.H. & López-Fernández, H. (2016) Continental cichlid radiations: functional diversity reveals the role of changing ecological opportunity in the Neotropics. Proceedings of the Royal Society B: Biological Sciences, 283 (1836), 20160556, 1–9. https://doi.org/10.1098/rspb.2016.0556
  3. Artigas Azas, J.M. (2017) A revolutionary beautiful fish Thorichthys panchovillai. Cichlid News, 26 (4), 13–18.
  4. Bandelt, H.J., Forster, P. & Röhl, A. (1999) Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution, 16 (1), 37–48. https://doi.org/10.1093/oxfordjournals.molbev.a026036
  5. Barrientos, C., Elías, D. & Quintana, Y. (2015) Fishes from Lake Yaxhá, Mayan Biosphere Reserve, Petén, Guatemala. Check List, 11 (5), 1751–1751. https://doi.org/10.15560/11.5.1751
  6. Barrientos, C., Quintana, Y., Elías, D.J. & Rodiles-Hernández, R. (2018) Peces nativos y pesca artesanal en la cuenca Usumacinta, Guatemala. Revista mexicana de biodiversidad, 89 (Suplemento 2018), 118–130. https://doi.org/10.22201/ib.20078706e.2018.4.2180
  7. Brawand, D., Wagner, C.E., Li, Y.I., Malinsky, M., Keller, I., Fan, S., Simakov, O., Ng, A.Y., Lim, Z.W., Bezault, E., Turner-Maier, J., Johnson, J., Alcazar, R., Noh, H.J., Russell, P., Aken, B., Alföldi, J., Amemiya, C., Azzouzi, N., Baroiller, J.F., Baylor-Hubler, F., Berlin, A., Blooquist, R., Carleton, K.L., Conte, M.A., D’Cotta, H., Eshel, O., Gaffney, L., Galibert, F., Gante, H.F., Gnerre, S., Greuter, L., Guyon, R., Haddad, N.S., Haerty, W., Harris, R.M., Hofmann, H.A., Hourlier, T., Hulata, G., Jaffe, D.B., Lara, M., Lee, A.P., MacCallum, I., Mwaiko, S., Nikaido, M., Nishihara, H., Ozouf-Costaz, C., Penman, D.J., Przybylski, D., Rakotomanga, M., Renn, S.C.P., Ribeiro, F.J., Ron, M., Salzburger, W., Sanchez-Pulido, L., Santos, M.E., Searle, S., Sharpe, T., Swofford, R., Tan, F.J., Williams, L., Young, S., Yin, S., Okada, N., Kocher, T.D., Miska, E.A., Lander, E.S., Venkatesh, B., Fernald, R.D., Meyer, A., Ponting, C.P., Streelman, J.T., Lindblad-Toh, K., Seehausen, O. & Di Palma, F. (2014) The genomic substrate for adaptive radiation in African cichlid fish. Nature, 513 (7518), 375–381. https://doi.org/10.1038/nature13726
  8. Burnham, K.P. & Anderson, D.R. (2002) Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. 2nd Edition. Springer, New York, New York, 514 pp.
  9. Burress, E.D., Alda, F., Duarte, A., Loureiro, M., Armbruster, J.W. & Chakrabarty, P. (2018) Phylogenomics of pike cichlids (Cichlidae: Crenicichla): the rapid ecological speciation of an incipient species flock. Journal of evolutionary biology, 31 (1), 14–30. https://doi.org/10.1111/jeb.13196
  10. Burress, E.D., Piálek, L., Casciotta, J.R., Almirón, A., Tan, M., Armbruster, J.W. & Říčan, O. (2018) Island-and lake-like parallel adaptive radiations replicated in rivers. Proceedings of the Royal Society B: Biological Sciences, 285 (1870), 20171762, 1–9. https://doi.org/10.1098/rspb.2017.1762
  11. Ciezarek, A.G., Mehta, T.K., Man, A., Ford, A.G.P., Kavembe, G.D., Kasozi, N., Ngatunga, B. P., Shechonge, A.H., Tamatamah, R., Nyingi, D.W., Cnaani, A., Ndiwa, T.C., Di Palma, F., Turner, G.F., Genner, M.J. & Haerty, W. (2024) Ancient and recent hybridization in the Oreochromis cichlid fishes. Molecular Biology and Evolution, 41 (7), msae116, 1–9. https://doi.org/10.1093/molbev/msae116
  12. Darriba, D., Posada, D., Kozlov, A.M., Stamatakis, A., Morel, B. & Flouri, T. (2020) ModelTest-NG: a new and scalable tool for the selection of DNA and protein evolutionary models. Molecular biology and evolution, 37 (1), 291–294. https://doi.org/10.1093/molbev/msz189
  13. Del-Moral-Flores, L.F., López-Segovia, E. & Hernández-Arellano, T. (2017) Descripción de Thorichthys panchovillai sp. n., una nueva especie de cíclido (Actinopterygii: Cichlidae) de la cuenca del Río Coatzacoalcos, México. Revista peruana de biología, 24 (1), 3–10. https://doi.org/10.15381/rpb.v24i1.13104
  14. Edler, D., Klein, J., Antonelli, A. & Silvestro, D. (2021) raxmlGUI 2.0: a graphical interface and toolkit for phylogenetic analyses using RAxML. Methods in ecology and evolution, 12 (2), 373–377. https://doi.org/10.1111/2041-210X.13512
  15. Edgar, R.C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic acids research, 32 (5), 1792–1797. https://doi.org/10.1093/nar/gkh340
  16. Elías, D.J., McMahan, C.D., Matamoros, W.A., Gómez‐González, A.E., Piller, K.R. & Chakrabarty, P. (2020) Scale (s) matter: Deconstructing an area of endemism for Middle American freshwater fishes. Journal of Biogeography, 47 (11), 2483–2501. https://doi.org/10.1111/jbi.13941
  17. Elías, D.J., McMahan, C.D. & Piller, K.R. (2022) Molecular data elucidate cryptic diversity within the widespread Threadfin Shad (Dorosoma petenense: Clupeidae) across the Nearctic and Northern Neotropics. Hydrobiologia, 849 (1), 89–111. https://doi.org/10.1007/s10750-021-04713-8
  18. Elías, D.J., McMahan, C.D., Alda, F., García-Alzate, C., Hart, P.B. & Chakrabarty, P. (2023) Phylogenomics of trans-Andean tetras of the genus Hyphessobrycon Durbin 1908 (Stethaprioninae: Characidae) and colonization patterns of Middle America. PLoS One, 18 (1), e0279924, 1–25. https://doi.org/10.1371/journal.pone.0279924
  19. Elmer, K.R., Lehtonen, T.K. & Meyer, A. (2009) Color assortative mating contributes to sympatric divergence of neotropical cichlid fish. Evolution, 63 (10), 2750–2757. https://doi.org/10.1111/j.1558-5646.2009.00736.x
  20. Franco, M., Arce, E., Mercado-Silva, N., Córdoba-Aguilar, A. & Ramírez-Rodríguez, R. (2023) Invasive cichlids (Teleostei: Cichliformes) in the Amacuzac River, Mexico: Implications for the behavioral ecology of the native Mexican mojarra Amphilophus istlanus. Water Biology and Security, 2 (3), 100182, 1–4. https://doi.org/10.1016/j.watbs.2023.100182
  21. Fricke, R. Eschmeyer, W.N. & van der Laan R. (eds.) (2024) Eschmeyer’s catalog of fishes, genera, species, references. Electronic Version. Available from: http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp (accessed 10 November 2024)
  22. Granados-Dieseldorff, P., Christensen, M.F. & Kihn-Pineda, P.H. (2012) Fishes from Lachuá lake, upper Usumacinta basin, Guatemala. Check list, 8 (1), 95–101. https://doi.org/10.15560/8.1.095
  23. Hulsey, C.D., Fraser, G.J. & Streelman, J.T. (2005) Evolution and development of complex biomechanical systems: 300 million years of fish jaws. Zebrafish, 2 (4), 243–257. https://doi.org/10.1089/zeb.2005.2.24
  24. Hulsey, C.D. & García‐de‐León, F.J. (2013) Introgressive hybridization in a trophically polymorphic cichlid. Ecology and Evolution, 3 (13), 4536–4547. https://doi.org/10.1002/ece3.841
  25. Ilves, K.L., Torti, D. & López-Fernández, H. (2018) Exon-based phylogenomics strengthens the phylogeny of Neotropical cichlids and identifies remaining conflicting clades (Cichliformes: Cichlidae: Cichlinae). Molecular Phylogenetics and Evolution, 118, 232–243. https://doi.org/10.1016/j.ympev.2017.10.008
  26. Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K., Von Haeseler, A. & Jermiin, L.S. (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nature methods, 14 (6), 587–589. https://doi.org/10.1038/nmeth.4285
  27. Kimura, M. (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16, 111–120. https://doi.org/10.1007/BF01731581
  28. Leal‐Cardín, M., Bracamonte, S.E., Aldegunde, J., Magalhaes, I.S., Ornelas‐García, C.P. & Barluenga, M. (2024) Signatures of convergence in Neotropical cichlid fish. Molecular Ecology, 33 (e17524), 1–20. https://doi.org/10.1111/mec.17524
  29. Leigh, J.W., Bryant, D. & Nakagawa, S. (2015) POPART: full-feature software for haplotype network construction. Methods in Ecology & Evolution, 6 (9), 1110–1116. https://doi.org/10.1111/2041-210X.12410
  30. López-Fernández, H., Winemiller, K.O. & Honeycutt, R.L. (2010) Multilocus phylogeny and rapid radiations in Neotropical cichlid fishes (Perciformes: Cichlidae: Cichlinae). Molecular Phylogenetics and Evolution, 55 (3), 1070–1086. https://doi.org/10.1016/j.ympev.2010.02.020
  31. López-Fernández, H. (2021) Neotropical Riverine Cichlids: Adaptive Radiation and Macroevolution at Continental Scales. In: Abate, M.E. & Noakes, D.L. (Eds.), The Behavior, Ecology and Evolution of Cichlid Fishes. Fish & Fisheries Series. Vol. 40. Springer, Dordrecht, pp. 135–174. https://doi.org/10.1007/978-94-024-2080-7_5
  32. López Segovia, E. (2021) Sistemática y biogeografïa del género Thorichthys (Actinopterygii: Cichlidae) en México. Master thesis. Universidad Nacional Autónoma de México, Ciudad de Mexico, 178 pp.
  33. Maan, M.E. & Sefc, K.M. (2013) Colour variation in cichlid fish: developmental mechanisms, selective pressures and evolutionary consequences. Seminars in Cell & Developmental Biology, 24 (6–7), 516–528. https://doi.org/10.1016/j.semcdb.2013.05.003
  34. Martin, A.P. & Bermingham, E. (1998) Systematics and evolution of lower Central American cichlids inferred from analysis of cytochrome b gene sequences. Molecular Phylogenetics and Evolution, 9 (2), 192–203. https://doi.org/10.1006/mpev.1997.0461
  35. Martínez-Lendech, N., Martínez-Falcón, A.P., Schmitter-Soto, J.J., Mejía-Mojica, H., Sorani-Dalbón, V., Cruz-Ruíz, G.I. & Mercado-Silva, N. (2020) Ichthyological differentiation and homogenization in the Pánuco Basin, Mexico. Diversity, 12 (5), 1–19. https://doi.org/10.3390/d12050187
  36. Matamoros, W.A., Schaefer, J.F. & Kreiser, B.R. (2009) Annotated checklist of the freshwater fishes of continental and insular Honduras. Zootaxa, 2307 (1), 1–38. https://doi.org/10.11646/zootaxa.2307.1.1
  37. Matamoros, W.A., McMahan, C.D., Chakrabarty, P., Albert, J.S. & Schaefer, J.F. (2015) Derivation of the freshwater fish fauna of Central America revisited: Myers’s hypothesis in the twenty‐first century. Cladistics, 31 (2), 177–188. https://doi.org/10.1111/cla.12081
  38. Matlock, G.C. (2014) Temporal trends in non-native fishes established in the continental United States. Management of Biological Invasions, 5 (4), 349–355. https://doi.org/10.3391/mbi.2014.5.4.05
  39. McMahan, C.D., Matamoros, W.A., Piller, K.R. & Chakrabarty, P. (2015) Taxonomy and systematics of the herichthyins (Cichlidae: Tribe Heroini), with the description of eight new Middle American genera. Zootaxa, 3999 (2), 211–234. https://doi.org/10.11646/zootaxa.3999.2.3
  40. McMahan, C.D., Matamoros, W.A., Elías, D.J. & Piller, K.R. (2019) Species or population? Systematic status of Vieja coatlicue (Teleostei: Cichlidae). Neotropical Ichthyology, 17 (2), e190004, 1–8. https://doi.org/10.1590/1982-0224-20190004
  41. McGee, M.D., Borstein, S.R., Meier, J.I., Marques, D.A., Mwaiko, S., Taabu, A., Kishe, M.A., O’Meara, B., Bruggmann, R., Excoffier, L. & Seehausen, O. (2020) The ecological and genomic basis of explosive adaptive radiation. Nature, 586 (7827), 75–79. https://doi.org/10.1038/s41586-020-2652-7
  42. Meier, J.I., Marques, D.A., Mwaiko, S., Wagner, C.E., Excoffier, L. & Seehausen, O. (2017) Ancient hybridization fuels rapid cichlid fish adaptive radiations. Nature communications, 8 (1), 14363, 1–11. https://doi.org/10.1038/ncomms14363
  43. Miller, R.R. (1966) Geographical distribution of Central American freshwater fishes. Copeia, 1966 (4), 773–802. https://doi.org/10.2307/1441406
  44. Miller, R.R. & Taylor, J.N. (1984) Cichlasoma socolofi, a new species of cichlid fish of the Thorichthys group from northern Chiapas, Mexico. Copeia, 1984 (4), 933–940. https://doi.org/10.2307/1445337
  45. Miller, R.R. & Nelson, B.C. (1961) Variation, life colors, and ecology of Cichlasoma callolepis, a cichlid fish from southern Mexico, with a discussion of the Thorichthys species group. Occasional Papers of the Museum of Zoology University of Michigan, 622, 1–9.
  46. Miller, R.R., Minckley, W.L. & Norris, S.M. (2005) Freshwater fishes of México. University of Chicago Press, Chicago, Illinois, xxvi + 490 pp.
  47. Muschick, M., Barluenga, M., Salzburger, W. & Meyer, A. (2011) Adaptive phenotypic plasticity in the Midas cichlid fish pharyngeal jaw and its relevance in adaptive radiation. BMC Evolutionary Biology, 11, 1–12. https://doi.org/10.1186/1471-2148-11-116
  48. Myers, G.S. (1966) Derivation of the freshwater fish fauna of Central America. Copeia, 1966 (4), 766–773. https://doi.org/10.2307/1441405
  49. Nei, M. (1987) Molecular Evolutionary Genetics. Columbia University Press, New York, New York, ix + 512 pp. https://doi.org/10.7312/nei-92038
  50. Ottenburghs, J. (2020) Ghost introgression: spooky gene flow in the distant past. Bioessays, 42 (6), 2000012, 1–5. https://doi.org/10.1002/bies.202000012
  51. Paradis, E. (2010) pegas: an R package for population genetics with an integrated–modular approach. Bioinformatics, 26 (3), 419–420. https://doi.org/10.1093/bioinformatics/btp696
  52. Parker, E., Dornburg, A., Struthers, C.D., Jones, C.D. & Near, T.J. (2022) Phylogenomic species delimitation dramatically reduces species diversity in an Antarctic adaptive radiation. Systematic Biology, 71 (1), 58–77. https://doi.org/10.1093/sysbio/syab057
  53. Pereyra, S. & García, G. (2008) Patterns of genetic differentiation in the Gymnogeophagus gymnogenys species complex, a neotropical cichlid from South American basins. Environmental Biology of Fishes, 83, 245–257. https://doi.org/10.1007/s10641-008-9329-7
  54. Pérez‐Miranda, F., Mejía, O., Soto‐Galera, E., Espinosa‐Pérez, H., Piálek, L. & Říčan, O. (2018) Phylogeny and species diversity of the genus Herichthys (Teleostei: Cichlidae). Journal of Zoological Systematics and Evolutionary Research, 56 (2), 223–247. https://doi.org/10.1111/jzs.12197
  55. Piñeros, V.J., Pedraza-Marrón, C. del R., Betancourt-Resendes, I., Calderón-Cortés, N., Betancur-R, R. & Domínguez-Domínguez, O. (2022) Genome-wide species delimitation analyses of a silverside fish species complex in central Mexico indicate taxonomic over-splitting. BMC Ecology and Evolution, 22 (1), 108, 1–19. https://doi.org/10.1186/s12862-022-02063-0
  56. Quintana, Y. (2024) Fish fauna of the Río San Pedro and Río La Pasión, Usumacinta River Basin, Guatemala. Biota Neotropica, 24 (1), e20231481, 1–15. https://doi.org/10.1590/1676-0611-BN-2023-1481
  57. Rambaut, A., Drummond, A.J., Xie, D., Baele, G. & Suchard, M.A. (2018) Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic biology, 67 (5), 901–904. https://doi.org/10.1093/sysbio/syy032
  58. Recknagel, H., Elmer, K.R. & Meyer, A. (2013) A hybrid genetic linkage map of two ecologically and morphologically divergent Midas cichlid fishes (Amphilophus spp.) obtained by massively parallel DNA sequencing (ddRADSeq). G3: Genes| Genomes| Genetics, 3 (1), 65–74. https://doi.org/10.1534/g3.112.003897
  59. Říčan, O., Piálek, L., Dragová, K. & Novák, J. (2016) Diversity and evolution of the Middle American cichlid fishes (Teleostei: Cichlidae) with revised classification. Vertebrate Zoology, 66 (1), 1–102. https://doi.org/10.3897/vz.66.e31534
  60. Rico, C.N., Hoagstrom, C.W., Elías, D.J., McMahan, C.D. & Matamoros, W.A. (2022) Biotic regionalization of freshwater fishes in Northern Middle America highlights high beta diversity created by prominent biogeographic barriers. Frontiers of Biogeography, 14 (4), e58095, 1–14. https://doi.org/10.21425/F5FBG58095
  61. Rocamontes-Morales, J.A., Gutiérrez-Rodríguez, C., Rios-Cardenas, O. & Hernandez-Romero, P.C. (2021) Genetic and morphological differentiation in the green swordtail fish, Xiphophorus hellerii: The influence of geographic and environmental factors. Hydrobiologia, 848, 4599–4622. https://doi.org/10.1007/s10750-021-04664-0
  62. Rometsch, S.J., Torres-Dowdall, J. & Meyer, A. (2020) Evolutionary dynamics of pre-and postzygotic reproductive isolation in cichlid fishes. Philosophical Transactions of the Royal Society B, 375 (1806), 20190535, 1–13. https://doi.org/10.1098/rstb.2019.0535
  63. Ronco, F., Matschiner, M., Böhne, A., Boila, A., Büscher, H.H., El Taher, A., Indermaur, A., Malinsky, M., Ricci, V., Kahmen, A., Jentoft, S. & Salzburger, W. (2021) Drivers and dynamics of a massive adaptive radiation in cichlid fishes. Nature, 589 (7840), 76–81. https://doi.org/10.1038/s41586-020-2930-4
  64. Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic biology, 61 (3), 539–542. https://doi.org/10.1093/sysbio/sys029
  65. Sabaj, M.H. (2020) Codes for natural history collections in ichthyology and herpetology. Copeia, 108 (3), 593–669. https://doi.org/10.1643/ASIHCODONS2020
  66. Salzburger, W. (2018) Understanding explosive diversification through cichlid fish genomics. Nature Reviews Genetics, 19 (11), 705–717 https://doi.org/10.1038/s41576-018-0043-9
  67. Salzburger, W., Mack, T., Verheyen, E. & Meyer, A. (2005) Out of Tanganyika: genesis, explosive speciation, key-innovations and phylogeography of the haplochromine cichlid fishes. BMC Evolutionary Biology, 5, 1–15. https://doi.org/10.1186/1471-2148-5-17
  68. Santos, M.E., Lopes, J.F. & Kratochwil, C. F. (2023) East African cichlid fishes. EvoDevo, 14 (1), 1–21. https://doi.org/10.1186/s13227-022-00205-5
  69. Schmidt, T.R. & Gold, J.R. (1993) Complete sequence of the mitochondrial cytochrome b gene in the cherryfin shiner, Lythrurus roseipinnis (Teleostei: Cyprinidae). Copeia, 1993 (3), 880–883. https://doi.org/10.2307/1447258
  70. Seehausen, O. (2006) African cichlid fish: a model system in adaptive radiation research. Proceedings of the Royal Society B: Biological Sciences, 273 (1597), 1987–1998. https://doi.org/10.1098/rspb.2006.3539
  71. Stamatakis, A. (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30 (9), 1312–1313. https://doi.org/10.1093/bioinformatics/btu033
  72. Svardal, H., Salzburger, W. & Malinsky, M. (2021) Genetic variation and hybridization in evolutionary radiations of cichlid fishes. Annual Review of Animal Biosciences, 9 (1), 55–79. https://doi.org/10.1146/annurev-animal-061220-023129
  73. Tajima, F. (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 123 (3), 585–595. https://doi.org/10.1093/genetics/123.3.585
  74. Tamura, K., Stecher, G. & Kumar, S. (2021) MEGA11: molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 38 (7), 3022–3027. https://doi.org/10.1093/molbev/msab120
  75. Thomaz, A.T., Christie, M.R. & Knowles, L.L. (2016) The architecture of river networks can drive the evolutionary dynamics of aquatic populations. Evolution, 70 (3), 731–739. https://doi.org/10.1111/evo.12883
  76. Torres-Dowdall, J. & Meyer, A. (2021) Sympatric and allopatric diversification in the adaptive radiations of Midas cichlids in Nicaraguan Lakes. In: Abate, M.E. & Noakes, D.L. (Eds.), The Behavior, Ecology and Evolution of Cichlid Fishes. Fish & Fisheries Series. Vol. 40. Springer, Dordrecht, pp. 175–216. https://doi.org/10.1007/978-94-024-2080-7_6
  77. Trifinopoulos, J., Nguyen, L.T., von Haeseler, A. & Minh, B.Q. (2016) W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic acids research, 44 (1), 232–235. https://doi.org/10.1093/nar/gkw256
  78. Wagner, C.E. (2021) Ecological Opportunity, Genetic Variation, and the Origins of African Cichlid Radiations. In: Abate, M.E. & Noakes, D.L. (Eds.), The Behavior, Ecology and Evolution of Cichlid Fishes. Fish & Fisheries Series. Vol. 40. Springer, Dordrecht, pp. 79–106. https://doi.org/10.1007/978-94-024-2080-7_3
  79. Wagner, C.E., Harmon, L.J. & Seehausen, O. (2012) Ecological opportunity and sexual selection together predict adaptive radiation. Nature, 487 (7407), 366–369. https://doi.org/10.1038/nature11144
  80. Ward, L.M., McMahan, C.D., Khakurel, B., Wright, A.M. & Piller, K.R. (2022) Genomic data support the taxonomic validity of Middle American livebearers Poeciliopsis gracilis and Poeciliopsis pleurospilus (Cyprinodontiformes: Poeciliidae). PloS one, 17 (1), e0262687, 1–18. https://doi.org/10.1371/journal.pone.0262687
  81. Willis, S.C., Farias, I.P. & Ortí, G. (2014) Testing mitochondrial capture and deep coalescence in Amazonian cichlid fishes (Cichlidae: Cichla). Evolution, 68 (1), 256–268. https://doi.org/10.1111/evo.12230
  82. Zhang, D., Tang, L., Cheng, Y., Hao, Y., Xiong, Y., Song, G., Qu, Y., Rheindt, F.E., Alström, P., Jia, C. & Lei, F. (2019) “Ghost introgression” as a cause of deep mitochondrial divergence in a bird species complex. Molecular Biology and Evolution, 36 (11), 2375–2386. https://doi.org/10.1093/molbev/msz170

How to Cite

Elías, D.J., Betancourt-Resendes, I., Díaz-Flores, A., Camak, D.T., Domínguez-Domínguez, O., Artigas-Azas, J.M., Piller, K.R. & Mcmahan, C.D. (2025) Evolutionary history of the polymorphic Coatzacoalcos River endemic Thorichthys panchovillai (Cichliformes: Cichlidae). Zootaxa, 5618 (1), 29–46. https://doi.org/10.11646/zootaxa.5618.1.2