Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2025-08-21
Page range: 360-376
Abstract views: 89
PDF downloaded: 5

The evolution of symmetry in the Pterobranchia (Hemichordata)

Institut für Geologische Wissenschaften; Freie Universität Berlin; Malteser Str. 74-100; Haus C; Raum 105; D-12249 Berlin; Germany.
Hemichordata Pterobranchia tubarium bilateral symmetry radial symmetry glide-reflection symmetry

Abstract

Symmetry is an important aspect of any organism and the symmetry conditions can tell us much about relationships of taxa, but also of the life style of these. Pterobranch zooids possess a bilateral symmetry of their bodies, often modified by asymmetrical development of internal organs in these miniature organisms. A bilateral symmetry can only in part be shown for their tubaria as these colonial housing constructions appear to follow other rules of construction. A distinct left-right (L-R) asymmetry is found in the construction of the tubaria of all derived graptoloids, initially shown as antisymmetry, but in younger taxa expressed as a directional asymmetry. The encrusting stems of extant Rhabdopleura tubaria show a glide-reflection symmetry in their construction from fusellar halfrings or full rings, secreted from alternate sides. This is also seen in the tubaria of all derived graptolites, thus, differs from the basic bilateral symmetry of the pterobranch zooids. The branching patterns of the graptolite tubaria can be interpreted as glide-reflection symmetry due to the colonial organization with new thecal tubes arising alternating on the right and left sides of the stem.

 

References

  1. Allman, G.J. (1869) On Rhabdopleura, a new form of Polyzoa, from deep‐sea dredging in Shetland. Quarterly Journal of Microscopical Science, 9, 57–63, pl. 8.
  2. Andres, D. (1977) Graptolithen aus ordovizischen Geschieben und die frühe Stammesgeschichte der Graptolithen. Paläontologische Zeitschrift, 51 (1/2), 52–93. https://doi.org/10.1007/BF02986602
  3. Beli, E., De Castro Mendonça, L.M., Piraino, S. & Cameron, C.B. (2022) Development and phenotypic plasticity of tubes and tubaria of the living graptolite Rhabdopleura recondita (Pterobranchia, Hemichordata). Diversity, 14 (12), 1080. https://doi.org/10.3390/d14121080
  4. Berking, S. (2006) Principles of branch formation and branch patterning in Hydrozoa. International Journal of Developmental Biology, 50, 123–134. https://doi.org/10.1387/ijdb.052043sb
  5. Berking, S., Hesse, M. & Herrmann, K. (2002) A shoot meristem‐like organ in animals; monopodial and sympodial growth in Hydrozoa. International Journal of Developmental Biology, 46, 301–308.
  6. Blum, M. & Ott, T. (2018) Animal left‐right asymmetry. Current Biology, 28, R301–R304. https://doi.org/10.1016/j.cub.2018.02.073
  7. Bohlin, B. (1950) The affinities of the graptolites. Bulletin of the Geological Institute of Uppsala, 34, 107–113.
  8. Boorman, C.J. & Shimeld, S.M. (2002) The evolution of left‐right asymmetry in chordates. BioEssays, 24, 1004–1011. https://doi.org/10.1002/bies.10171
  9. Braithwaite, L.F. (1976) Graptolites from the Lower Ordovician Pogonip Group of Western Utah. The Geological Society of America, Special Paper, 166, 1–106. https://doi.org/10.1130/SPE166-p1
  10. Bronn, H.G. (1835) Lethaea Geognostica, Erster Band, das Uebergangs-, bis Oolithen-Gebirge enthaltend. Schweizerbart, Stuttgart, 544 pp.
  11. Brown, F.D., Prendergast, A. & Swalla, B.J. (2008) Man is but a worm: Chordate origins. Genesis, 46, 605–613. https://doi.org/10.1002/dvg.20471
  12. Bulman, O.M.B. (1955) Graptolithina. In: Moore, R.C. (Ed.), Treatise on Invertebrate Paleontology. Part V. Geological Society of America and University of Kansas Press, Lawrence, Kansas, pp. i–xvii + 1–101.
  13. Bulman, O.M.B. (1970) Graptolithina. In: Teichert, C. (Ed.), Treatise on Invertebrate Paleontology. Part V. 2nd Edition. Geological Society of America and University of Kansas Press, Lawrence, Kansas, pp. i–xxxii + 1–163.
  14. Cameron, C.B. (2002) Particle retention and flow in the pharynx of the enteropneust worm Harrimania planktophilus: the filter‐feeding pharynx may have evolved before the chordates. The Biological Bulletin, 202 (2), 192–200. https://doi.org/10.2307/1543655
  15. Cameron, C.B. (2005) A phylogeny of the hemichordates based on morphological characters. Canadian Journal of Zoology, 83, 196–215. https://doi.org/10.1139/z04-190
  16. Cameron, C.B., Garey, J.R. & Swalla, B.J. (2000) Evolution of the chordate body plan: New insights from phylogenetic analyses of deuterostome phyla. PNAS, 97 (9), 4469–4474. https://doi.org/10.1073/pnas.97.9.4469
  17. Cannon, J.T., Kocot, K.M., Waits, D.S., Weese, D.A., Swalla, B.J., Santos, S.R. & Halanych, K.M. (2014) Phylogenomic resolution of the Hemichordate and echinoderm clade. Current Biology, 24, 2827–2832. https://doi.org/10.1016/j.cub.2014.10.016
  18. Caron, J.-B., Conway Morris, S. & Cameron, C.B. (2013) Tubicolous enteropneusts from the Cambrian period. Nature, 495, 503–506. https://doi.org/10.1038/nature12017
  19. Cooper, R.A. (1973) Taxonomy and evolution of Isograptus Moberg in Australasia. Palaeontology, 16 (1), 45–115.
  20. Corballis, M.C. (2020) Bilaterally symmetrical: to be or not to be? Symmetry, 12 (326), 1–12. https://doi.org/10.3390/sym12030326
  21. Cox, I. (1933) Climacograptus inuiti sp. nov. and its development. Geological Magazine, 70 (1), 1–19. https://doi.org/10.1017/S0016756800091202
  22. Dawydoff, C. (1948) II. Classe des Ptérobranches. In: Grassé, P.-P. (Ed.), Traité de Zoologie. Anatomie, Systématique, Biologie. (Échinodermes–Stomochordés–Protochordés). Vol. 11. Masson, Paris, pp. 454–532.
  23. Defourneaux, É., Herranz, M., Armenteros, M., Sørensen, M.V., Norenburg, J.L., Park, T. & Worsaae, K. (2024) Circumtropical distribution and cryptic species of the meiofaunal enteropneust Meioglossus (Harrimaniidae, Hemichordata). Scientific Reports, 14 (9296), 1–20. https://doi.org/10.1038/s41598-024-57591-0
  24. Dilly, P.N. (2014) Cephalodiscus reproductive biology (Pterobranchia, Hemichordata). Acta zoologica Cracoviensia (Stockholm), 95, 111–124. https://doi.org/10.1111/azo.12015
  25. Dzik, J. (1999) Evolutionary origin of asymmetry in early metazoan animals. In: Palyi, G., Zucchi, C. & Caglioti, L. (Eds.), Advances in Biochirality. Elsevier Science S.A., Amsterdam, pp. 153–190. https://doi.org/10.1016/B978-008043404-9/50012-7
  26. Elles, G.L. & Wood, E.M.R. (1906) A monograph of British graptolites, Part 5. Palaeontographical Society Monograph, 60 (288), lxxiii–xcvi + 181–216, pls. 26–27. https://doi.org/10.1080/02693445.1906.12035526
  27. Ezhova, O.V., Lukinykh, A.I., Galkin, S.V., Krylova, E.M. & Gebruk, A.V. (2021) Deep‐sea acorn worms (Enteropneusta) from the Bering Sea with the description of a new genus and a new species of Torquaratoridae dominating soft‐bottom communities. Deep-Sea Research II, 195, 105014. https://doi.org/10.1016/j.dsr2.2021.105014
  28. Finnerty, J.R. (2005) Did internal transport, rather than directed locomotion, favor the evolution of bilateral symmetry in animals? BioEssays, 27 (11), 1174–1180. https://doi.org/10.1002/bies.20299
  29. Gonzalez, P. & Cameron, C.B. (2012) Ultrastructure of the coenecium of Cephalodiscus (Hemichordata: Pterobranchia). Canadian Journal of Zoology, 90, 1261–1269. https://doi.org/10.1139/z2012-096
  30. Gordon, D.P., Randolph Quek, Z.B., Orr, R.J.S., Waeschenbach, A., Huang, D., Strano, F., Ramsfjell, M.H. & Liow, L.H. (2023) Morphological diversity and a ribosomal phylogeny of Rhabdopleura (Hemichordata: Graptolithina) from the Western Pacific (Singapore and New Zealand), with implications for a re‐evaluation of rhabdopleurid species diversity. Marine Biodiversity, 53 (4), 1–18. https://doi.org/10.1007/s12526-022-01310-3
  31. Gordon, D.P., Randolph Quek, Z.B. & Huang, D. (2024) Four new species and a ribosomal phylogeny of Rhabdopleura (Hemichordata: Graptolithina) from New Zealand, with a review and key to all described extant taxa. Zootaxa, 5424 (3), 323–357. https://doi.org/10.11646/zootaxa.5424.3.3
  32. Grande, C. & Patel, N.H. (2009) Lophotrochozoa get into the Game: The nodal pathway and left/right asymmetry in Bilateria. Cold Spring Harbor Symposia on Quantitative Biology LXXIV. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp. 281–287. [978-087969870-6] https://doi.org/10.1101/sqb.2009.74.044
  33. Grimes, D.T. & Burdine, R.D. (2017) Left‐right patterning: Breaking symmetry to asymmetric morphogenesis. Trends in Genetics, 33 (9), 616–628. https://doi.org/10.1016/j.tig.2017.06.004
  34. Haeckel, E. (1874) Die Gastraea-Theorie, die phylogenetische Classification des Thierreichs und die Homologie der Keimblätter. Jenaische Zeitschrift für Naturwissenschaft, 8, 1–57, 1 pl.
  35. Hadfield, M.G. (1975) Chapter 7: Hemichordata. In: Giese, A.C. & Pearse, J.S. (Eds.), Reproduction of marine invertebrates. Academic, New York, New York, pp. 185–240. https://doi.org/10.1016/B978-0-12-282502-6.50012-1
  36. Hall, J. (1858) Note upon the genus Graptolithus, and description of some remarkable new forms from the shales of the Hudson River Group, discovered in the investigations of the Geological Survey of Canada, under the direction of Sir W.E. Logan, F.R.S. Canadian Naturalist and Geologist and Proceedings of the Natural History Society of Montreal, 3, 139–150 + 161–177.
  37. Harmer, S.F. (1905) The Pterobranchia of the Siboga‐Expedition with an account of other species. Siboga Expedition Monograph, 26, 1–133, pls. 1–14. https://doi.org/10.5962/bhl.title.11734
  38. Harmer, S.F. & Ridewood, W.G. (1913) The Pterobranchia of the Scottish National Antarctic Expedition (1902–1904). Transactions of the Royal Society of Edinburgh, 49, 531–565. https://doi.org/10.1017/S0080456800013090
  39. Holland, N.D., Kuhnz, L.A. & Osborn, K.J. (2012) Morphology of a new deep‐sea acorn worm (Class Enteropneusta, Phylum Hemichordata): a part‐time demersal drifter with externalized ovaries. Journal of Morphology, 273, 661–671. https://doi.org/10.1002/jmor.20013
  40. Holló, G. (2014) Animals are both radially and bilaterally symmetrical: Accommodating seemingly mutually exclusive paradigms. BioEssays, 36, 901–902.
  41. Holló, G. (2015) A new paradigm for animal symmetry. Interface Focus, 5, 120150032. https://doi.org/10.1098/rsfs.2015.0032
  42. Holló, G. (2017) Demystification of animal symmetry: Symmetry is a response to mechanical forces. Biology Direct, 12 (11), 1–18. https://doi.org/10.1186/s13062-017-0182-5
  43. Holló, G. & Novák, M. (2012) The manoeuvrability hypothesis to explain the maintenance of bilateral symmetry in animal evolution. Biology Direct, 7, 22. https://doi.org/10.1186/1745-6150-7-22
  44. Hsü, S.C. & Ma, C.T. (1948) The Ichang formation and the Ichangian fauna. Bulletin of the National Research Institute of Geology, Academia Sinica, 8, 1–51.
  45. Isaeva, V.V. & Kasyanov, N.V. (2021) Symmetry transformations in metazoan evolution and development. Symmetry, 13 (160), 1–30. https://doi.org/10.3390/sym13020160
  46. Ivantsov, A.Y. & Zakrevskaya, M. (2023) Body plan of Dickinsonia, the oldest mobile animals. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 114, 95–108. https://doi.org/10.1017/S175569102300004X
  47. Kaul-Strelow, S. & Stach, T. (2013) A detailed description of the development of the hemichordate Saccoglossus kowalewskii using SEM, TEM, histology and 3D-reconstructions. Frontiers in Zoology, 10, 53. https://doi.org/10.1186/1742-9994-10-53
  48. Kosevich, I.A. (2006a) Chapter 5. Branching in colonial hydroids. In: Davies, J.A. (Ed.), Branching Morphogenesis. Springer, Berlin, pp. 91–112. https://doi.org/10.1007/0-387-30873-3_5
  49. Kosevich, I.A. (2006b) Changes in the patterning of a hydroid colony. Zoology, 109, 244–259. https://doi.org/10.1016/j.zool.2006.03.004
  50. Kosevich, I.A., Herrmann, K. & Berking, S. (2001) Shaping the colony elements in Laomedea flexuosa Hinks (Hydrozoa, Thecaphora) includes a temporal and spatial control of skeleton hardening. Biological Bulletin, 201, 417–423. https://doi.org/10.2307/1543619
  51. Kozłowski, R. (1938) Informations préliminaires sur les Graptolithes du Tremadoc de la Pologne et sur leur portée théorique. Annales Musei Zoologici Polonici, 13 (16), 183–196.
  52. Kozłowski, R. (1949) Les graptolithes et quelques nouveaux groups d’animaux du Tremadoc de la Pologne. Palaeontologia Polonica, 3, 1–235, 42 pls.
  53. Kraft, P. (1926) Ontogenetische Entwicklung und Biologie von Diplograptus und Monograptus. Paläontologische Zeitschrift, 7, 207–249. https://doi.org/10.1007/BF03161573
  54. Kuznetsov, A.N. (2024) Glide‐reflection symmetry in deuterostomes: an evolutionary perspective. Zoological Journal of the Linnean Society, 200, 621–643. https://doi.org/10.1093/zoolinnean/zlad095
  55. Lankester, E.R. (1884) A contribution to the knowledge of Rhabdopleura. Quarterly Journal of Microscopical Science, 24, 622–647, pls. 37–41. https://doi.org/10.1242/jcs.s2-24.96.622
  56. Larouche‐Bilodeau, C., Guilbeault, X. & Cameron, C.B. (2020) Filter feeding, deviations from bilateral symmetry, developmental noise, and heterochrony of hemichordate and cephalochordate gills. Ecology and Evolution, 10, 13544–13554. https://doi.org/10.1002/ece3.6962
  57. Lerosey-Aubril, R., Maletz, J., Coleman, R., Del Mouro, L., Gaines, R.R., Skabelund, J. & Ortega-Hernández, J. (2024) Benthic pterobranchs from the Cambrian (Drumian) Marjum Konservat-Lagerstätte of Utah. Papers in Palaeontology, 10 (3), e1555, 1–23. https://doi.org/10.1002/spp2.1555
  58. Lester, S.M. (1988) Ultrastructure of adult gonads and development and structure of the larva of Rhabdopleura normani (Hemichordata: Pterobranchia). Acta Zoologica, Stockholm, 69, 95–109. https://doi.org/10.1111/j.1463-6395.1988.tb00906.x
  59. Levin, M., Klar, A.J.S. & Ramsdell, A.F. (2016) Introduction to provocative questions in left–right asymmetry. Philosophical Transactions of the Royal Society, B 371, 20150399. https://doi.org/10.1098/rstb.2015.0399
  60. Linnaeus, C. (1758) Systema naturæ per regna tria naturæ, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Tomus I. Editio Decima, Reformata. Salvius, Holmiae, 824 pp. https://doi.org/10.5962/bhl.title.542
  61. Maletz, J. (2014a) The classification of the Pterobranchia (Cephalodiscida and Graptolithina). Bulletin of Geosciences, 89 (3), 477–540. https://doi.org/10.3140/bull.geosci.1465
  62. Maletz, J. (2014b) Hemichordata (Pterobranchia, Enteropneusta) and the fossil record. Palaeogeography, Palaeoclimatology, Palaeoecology, 398, 16–27. https://doi.org/10.1016/j.palaeo.2013.06.010
  63. Maletz, J. (2017) Fossils explained 70. Graptolites: Fossil and living. Geology Today, 33 (6), 233–240. https://doi.org/10.1111/gto.12213
  64. Maletz, J. (2021) Symmetry in graptolite zooids and tubaria (Pterobranchia, Hemichordata). Evolution and Development, 23, 513–523. https://doi.org/10.1111/ede.12394
  65. Maletz, J. (2023) n.k. In: Bates, D.E.B., Beli, E., Brussa, E.D., Cameron, C.B., Cooper, R.A., Gonzalez, P., Kozłowska, A., Lenz, A.C., Loydell, D.K., Maletz, J., Rigby, S., Riva, J.F., Steiner, M., Toro, B.A., VandenBerg, A.H.M., Zalasiewicz, J.A., & Zhang, Y.D. (Eds.), Treatise on Invertebrate Paleontology, Part V, Hemichordata, Second Revision, Including Enteropneusta, Pterobranchia (Graptolithina). The University of Kansas, Paleontological Institute, Lawrence, Kansas, pp. i–xxx + 1–548.
  66. Maletz, J. (2024) The evolutionary origins of the Hemichordata (Enteropneusta & Pterobranchia) – A review based on fossil evidence and interpretations. Bulletin of Geosciences, 99 (2), 127–147. https://doi.org/10.3140/bull.geosci.1899
  67. Maletz, J. & Beli, E. (2018) Treatise on Invertebrate Paleontology, Part V, Second revision, Chapter 15: Subclass Graptolithina and incertae sedis family Rhabdopleuridae: Introduction and systematic descriptions. Treatise Online, 101, 1–14. https://doi.org/10.17161/to.v0i0.7053
  68. Maletz, J. & Gonzalez, P. (2017) Treatise on Invertebrate Paleontology, Part V, Second Revision, Chapter 14. Order Cephalodiscida. Treatise Online, 100, 1–8.
  69. Maletz, J. & Lerosey-Aubril, R. (2025) Monopodial and sympodial growth modes in the colonial Graptolithina (Hemichordata, Pterobranchia). Evolution and Development, 27 (2), e70010. https://doi.org/10.1111/ede.70010
  70. Maletz, J., Lenz, A.C. & Bates, D.E.B. (2016) Treatise on Invertebrate Paleontology, Part V, Second Revision, Chapter 4: Morphology of the Pterobranch tubarium. Treatise Online, 76, 1–63. https://doi.org/10.17161/to.v0i0.5727
  71. Manuel, M. (2009) Early evolution of symmetry and polarity in metazoan body plans. Comptes Rendus Biologies, 332 (2–3), 184–209. https://doi.org/10.1016/j.crvi.2008.07.009
  72. Marfenin, N.N. (1997) Adaptation capabilities of marine modular organisms. Hydrobiologia, 355, 153–158. https://doi.org/10.1023/A:1003069831832
  73. Marfenin, N.N. (2021) Morphogenetic polyvariance in the colonial hydroid Dynamena pumila (L.). Diversity, 13 (683), 1–17. https://doi.org/10.3390/d13120683
  74. Marfenin, N.N., Margulis, R.J. & Mayer, E.M. (1995) Morphological variability of the colonial hydroid Dynamena pumilla, with classification of found morphoptypes. Russian Academy of Sciences. Proceedings of the Zoological Institute St. Petersburg, 261, 71–89.
  75. Matus, D.Q., Pang, K., Marlow, H., Dunn, C.W., Thomsen, G.H. & Martindale, M.Q. (2005) Molecular evidence for deep evolutionary roots of bilaterality in animal evolution. Proceedings of the National Academy of Sciences USA, 103 (30), 11195–11200. https://doi.org/10.1073/pnas.0601257103
  76. Namigai, E.K.O., Kenny, N.J. & Shimeld, S.M. (2014) Right across the tree of life: the evolution of left‐right asymmetry in the Bilateria. Genesis, 52, 458–470. https://doi.org/10.1002/dvg.22748
  77. Palmer, A.R. (2004) Symmetry breaking and the evolution of development. Science, 306, 828–833. https://doi.org/10.1126/science.1103707
  78. Peterson, K.J., Su, Y.H., Arnone, M.I., Swalla, B.J. & King, B.L. (2013) MicroRNAs support the monophyly of enteropneust hemichordates. Journal of Experimental Zoology, Part B: Molecular and Developmental Evolution, 320 (6), 368–374. https://doi.org/10.1002/jez.b.22510
  79. Richter, R. (1871) Aus dem Thüringischen Schiefergebirge. Zeitschrift der Deutschen Geologischen Gesellschaft, 23, 231–256.
  80. Ridewood, W.G. (1907) Pterobranchia. Cephalodiscus. National Antarctic Expedition 1901–1904. Natural History Zoology (Vertebrata: Mollusca: Crustacea), 2, 1–67, pls. 1–7.
  81. Riva, J. (1987) The graptolite Amplexograptus praetypicalis n. sp. and the origin of the typicalis group. Canadian Journal of Earth Sciences, 24, 924–933. https://doi.org/10.1139/e87-090
  82. Roemer, F. (1861) Die fossile Fauna der Silurischen Diluvial-Geschiebe von Sadewitz bei Oels in Niederschlesien: Eine Palaeontologische Monographie. Robert Nischkowsky, Breslau, xvi + 81 pp., pls. 1–8.
  83. Sars, G.O. (1872) On some remarkable forms of animal life from the great deeps off the Norwegian coast. I. Partly from posthumous manuscripts of the late Professor Dr. Michael Sars. University Program for the 1st half-year 1869. Brøgger & Christie, Christiania, 82 pp., pls. 1–6. https://doi.org/10.5962/bhl.title.11274
  84. Sars, G.O. (1874) On Rhabdopleura mirabilis (M. Sars). Quarterly Journal of Microscopical Science, New Series, 14, 23–44, 1 pl. https://doi.org/10.1242/jcs.s2-14.53.23
  85. Sato, A. & Holland, W.H. (2008) Asymmetry in a pterobranch hemichordate and the evolution of left‐right patterning. Developmental Dynamics, 237, 3634–3639. https://doi.org/10.1002/dvdy.21588
  86. Schepotieff, A. (1905) Zur Organisation von Cephalodiscus. Bergens Museums Aarbog, 8, 1–20, 2 pl.
  87. Simakov, O., Kawashima, T., Marlétaz, F., Jenkins, J., Koyanagi, R., Mitros, T., Hisata, K., Bredeson, J., Shoguchi, E., Gyoja, F., Yue, J.-X., Chen, Y.-C., Freeman Jr, R.M., Sasaki, A., Hikosaka-Katayama, T., Sato, A., Fujie, M., Baughman, K.W., Levine, J., Gonzalez, P., Cameron, C., Fritzenwanker, J.H., Pani, A.M., Goto, H., Kanda, M., Arakaki, N., Yamasaki, S., Qu, J., Cree, A., Ding, Y., Dinh, H.H., Dugan, S., Holder, M., Jhangiani, S.N., Kovar, C.L., Lee, S.L., Lewis, L.R., Morton, D., Nazareth, L.V., Okwuonu, G., Santibanez, J., Chen, R., Richards, S., Muzny, D.M., Gillis, A., Peshkin, L., Wu, M., Humphreys, T., Su, Y.-H., Putnam, N.H., Schmutz, J., Fujiyama, A., Yu, J.-K., Tagawa, K., Worley, K.C., Gibbs, R.A., Kirschner, M.W., Lowe, C.J., Satoh, N., Rokhsar, D.S. & Gerhart, J. (2015) Hemichordate genomes and deuterostome origins. Nature, 527, 459–465. https://doi.org/10.1038/nature16150
  88. Soukup, V. (2017) Left-right asymmetry specifications in amphioxus: review and prospects. International Journal of Developmental Biology, 61, 611–620. https://doi.org/10.1387/ijdb.170251vs
  89. Stebbing, A.R.D. (1970a) Aspects of the reproduction and life cycle of Rhabdopleura compacta (Hemichordata). Marine Biology, 5, 205–212. https://doi.org/10.1007/BF00346908
  90. Stebbing, A.R.D. (1970b) The status and ecology of Rhabdopleura compacta (Hemichordata), from Plymouth. Journal of the Marine Biological Association of the United Kingdom, 50, 209–221. https://doi.org/10.1017/S0025315400000722
  91. Swalla, B.J. & Smith, A.B. (2008) Deciphering deuterostome phylogeny: Molecular, morphological and palaeontological perspectives. Philosophical Transactions of the Royal Society, London B, Biological Sciences, 363, 1557–1568. https://doi.org/10.1098/rstb.2007.2246
  92. Tassia, M.G., Cannon, J.T. & Halanych, K.M. (2018) Chapter 9 Enteropneusta. In: Schmidt-Rhaesa, A. (Ed.), Handbook of Zoology – Miscellaneous Invertebrates. De Gruyter, Berlin and Boston, Massachusetts, pp. 299–325. https://doi.org/10.1515/9783110489279-009
  93. Telford, M.J., Lowe, C.J., Cameron, C.B., Ortega Martinez, O., Aronowicz, J., Oliveri, P. & Copley, R.R. (2014) Phylogenomic analysis of echinoderm class relationships supports Asterozoa. Proceedings of the Royal Society of London, Series B (Biological Sciences), 281, 20140479. https://doi.org/10.1098/rspb.2014.0479
  94. Törnquist, S.L. (1901) Researches into the graptolites of the lower zones of the Scanian and Vestrogothian Phyllo-Tetragraptus beds, Part 1. Lunds Universitets Årsskrift, 37, 2 (5), 1–26, 3 pl. [also Kungliga Fysiografiska Sällskapets Handlingar, 12 (5), 1–26, 3 pl.]
  95. Toxvaerd, S. (2021) The emergence of the bilateral symmetry in animals: A review and a new hypothesis. Symmetry, 13 (261), 1–10. https://doi.org/10.3390/sym13020261
  96. Urbanek, A. (1966) On the evolution and morphology of the Cucullograptinae (Monograptidae, Graptolithina). Acta Palaeontologica Polonica, 11, 291–544.
  97. Urbanek, A. (1970) Neocucullograptinae n. subfam. (Graptolithina) – their evolutionary and stratigraphic bearing. Acta Palaeontologica Polonica, 15, 163–383.
  98. Urbanek, A. (1976) The problem of graptolite affinities in the light of ultrastructural studies on peridermal derivatives in pterobranchs. Acta Palaeontologica Polonica, 21 (1), 3–36, 4 pls.
  99. Urbanek, A. & Dilly, P.N. (2000) The stolon system in Rhabdopleura compacta (Hemichordata) and its phylogenetic implications. Acta Palaeontologica Polonica, 45, 3, 201–226.
  100. Urenda, J.C. & Kreinovich, V. (2023) Why gliding symmetry used to be prevalent in biology but practically disappeared. Departmental Technical Reports (CS). 1793. University of Texas, El Paso, 6 pp.
  101. Worsaae, K., Sterrer, W., Kaul‐Strehlow, S., Hay‐Schmidt, A. & Giribet, G. (2012) An anatomical description of a miniaturized acorn worm (Hemichordata, Enteropneusta) with asexual reproduction by paratomy. PLoS One, 7 (11), 1–19. https://doi.org/10.1371/journal.pone.0048529

How to Cite

Maletz, J. (2025) The evolution of symmetry in the Pterobranchia (Hemichordata). Zootaxa, 5683 (3), 360–376. https://doi.org/10.11646/zootaxa.5683.3.2