Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2025-09-04
Page range: 439-450
Abstract views: 265
PDF downloaded: 5

Trends in diagnostic characters of Snakes species (Squamata) in the first two decades of the 21st century

Instituto de Biociências; Depto. de Ciências Biológicas e Ambientais; Laboratório de Herpetologia (LHERP). 11330-900; São Vicente; São Paulo; Brasil
Instituto de Biociências; Depto. de Ciências Biológicas e Ambientais; Laboratório de Herpetologia (LHERP). 11330-900; São Vicente; São Paulo; Brasil; Universidade Estadual Paulista (UNESP); Instituto de Pós-graduação em Ciências Biológicas (Zoologia). 18618-689; Botucatu; São Paulo; Brasil
Universidade Federal do ABC (UFABC); Centro de Ciências Naturais e Humanas (CCNH); Laboratório de Paleontologia de Vertebrados e Comportamento Animal (LAPC). 09606-045; São Bernardo do Campo; São Paulo; Brasil
Instituto de Biociências; Depto. de Ciências Biológicas e Ambientais; Laboratório de Herpetologia (LHERP). 11330-900; São Vicente; São Paulo; Brasil; Universidade Estadual Paulista (UNESP); Instituto de Pós-graduação em Ciências Biológicas (Zoologia). 18618-689; Botucatu; São Paulo; Brasil
Reptilia Herpetofauna historic Reptile Character states Integrative Taxonomy Diagnosis

Abstract

The number of recognized reptile species globally exceeds 12.440. Half of them have been described after 1925, and only in the 21st century 1,920 reptiles were described, which is almost 25% of the currently valid herpetofauna species. Of all reptile diversity, more than 4,000 are snakes. This makes it essential to understand how they arose, so researching taxonomic informative characters is crucial. Considering this, the following work traces the history of the use of diagnostic characters in snake’s descriptions during the first two decades of the 21st century. For this purpose, a list of 661 new species described between 2001 and 2020 were obtained through “The Reptile Database”. The survey revealed a strong tendency for some morphological traits to be the main choice for descriptions, as the most diagnostic characters were related to head scalation (21.10%), morphometry (17.68%), coloration (15.44%), body scalation (14.77%) and dentition characters (10%), which demonstrates that there is still a prevalence of morphological characters in the descriptions of new species. Despite this, it is possible to observe an increase in the use of molecular data, especially in the last decade, suggesting that new descriptions tend to use different sources of information in search of an integrative approach. Tracing this scenario can provide valuable insights for future works on the descriptions of new snake taxa.

 

References

  1. Allen, W.L., Baddeley, R., Scott-Samuel, N.E. & Cuthill, I.C. (2013) The evolution and function of pattern diversity in snakes. Behavioral Ecology, 24 (5), 1237–1250. https://doi.org/10.1093/beheco/art058
  2. Amarasinghe, A.A.T., Masroor, R., Lalremsanga, H.T., Weerakkody, S., Ananjeva, N.B., Campbell, P.D., Kennedy-Gold, S.R., Bandara, S.K., Bragin, A.M., Gayan, A.K.A., Sharma, V.R., Sayyed, A., Biakzuala, L., Kanishka, A.S., Ganesh, S.R., Ineich, I., de Silva, A., Wickramasinghe, L.J.M., Seneviratne, S.S., Poyarkov, N.A., Vogel, G. & Jablonski, D. (2023) Integrative approach resolves the systematics of barred wolf snakes in the Lycodon striatus complex (Reptilia, Colubridae). Zoologica Scripta, 52 (3), 421–443. https://doi.org/10.1111/zsc.12587
  3. Arrigo, M.I., De Oliveira Vilaca, L.M., Fofonjka, A., Srikanthan, A.N., Debry, A. & Milinkovitch, M.C. (2019) Phylogenetic mapping of scale nanostructure diversity in snakes. BMC Evolutionary Biology, 19 (1), 1–20. https://doi.org/10.1186/s12862-019-1411-6
  4. Arteaga, A., Mebert, K., Valencia, J.H., Cisneros-Heredia, D.F., Peñafiel, N., Reyes-Puig, C., Vieira-Fernandes, J.L. & Guayasamin, J.M. (2017) Molecular phylogeny of Atractus (Serpentes, Dipsadidae), with emphasis on Ecuadorian species and the description of three new taxa. ZooKeys, 661, 91–153. https://doi.org/10.3897/zookeys.661.11224
  5. Blanckenhorn, W.U. (2000) The evolution of body size: what keeps organisms small? The Quarterly Review of Biology, 75 (4), 385–407. https://doi.org/10.1086/393620
  6. Boulenger, G.A. (1896) Catalogue of the snakes in the British Museum (Natural History). Vol. 3. Trustees of the British Museum, London, 726 pp. Available from: https://www.biodiversitylibrary.org/part/145582 (accessed 4 August 2025)
  7. Broadley, D.G. & Wallach, V. (2007) A review of East and Central African species of Letheobia Cope, revived from the synonymy of Rhinotyphlops Fitzinger, with descriptions of five new species (Serpentes: Typhlopidae). Zootaxa, 1515 (1), 31–68. https://doi.org/10.11646/zootaxa.1515.1.2
  8. Broeckhoven, C. & du Plessis, A. (2018) X-ray microtomography in herpetological research: a review. Amphibia-Reptilia, 39 (4), 377–401. https://doi.org/10.1163/15685381-20181102
  9. Burbrink, F.T., Grazziotin, F.G., Pyron, R.A., Cundall, D., Donnellan, S., Irish, F., Keogh, J.S., Kraus, F., Murphy, R.W., Noonan, B., Raxworthy, C.J., Ruane, S., Lemmon, A.R., Lemmon, E.M. & Zaher, H. (2020) Interrogating genomic-scale data for Squamata (lizards, snakes, and amphisbaenians) shows no support for key traditional morphological relationships. Systematic Biology, 69 (3), 502–520. https://doi.org/10.1093/sysbio/syz062
  10. Burbrink, F.T., Crother, B.I., Murray, C.M., Smith, B.T., Ruane, S., Myers, E.A. & Pyron, R.A. (2022) Empirical and philosophical problems with the subspecies rank. Ecology and Evolution, 12 (7), e9069. https://doi.org/10.1002/ece3.9069
  11. Dubois, A. (2017) Diagnoses in zoological taxonomy and nomenclature. Bionomina, 12 (1), 63–85. https://doi.org/10.11646/bionomina.12.1.8
  12. Dowling, H.G. (1951) A proposed standard system of counting ventrals in snakes. British Journal of Herpetology, 1, 97–99.
  13. Deepak, V., Passos, P., Nagy, Z.T., Zaher, H., Šmíd, J., Nguyen, T.Q., Carranza, S., Cisneros-Heredia, D.F., David, P., Tamar, K. & Gower, D.J. (2021) Contributions to ophiology in Zootaxa 2001–2020: patterns and trends. Zootaxa, 4979 (1), 17–22. https://doi.org/10.11646/zootaxa.4979.1.4
  14. Entiauspe-Neto, O.M., Tiutenko, A., Azevedo, W.D.S. & Abegg, A.D. (2021) Extraordinary claims require extraordinary evidence: on the taxonomic identity of Phalotris cerradensis Silveira, 2020. Revue suisse de Zoologie, 128 (1), 53–60. https://doi.org/10.35929/RSZ.0034
  15. Fernandes, D.L., Nunes, I. & Costa, F.R. (2021) A taxonomic approach on diagnostic characters used to define new pterosaur taxa and an estimation of pterosaur diversity. Anais da Academia Brasileira de Ciências, 93, e20201568. https://doi.org/10.1590/0001-3765202120201568
  16. Georgalis, G.L. & Scheyer, T.M. (2022) Crushed but not lost: a colubriform snake (Serpentes) from the Miocene Swiss Molasse, identified through the use of micro-CT scanning technology. Swiss Journal of Geosciences, 115, 15. https://doi.org/10.1186/s00015-022-00417-w
  17. Graboski, R., Arredondo, J.C., Grazziotin, F.G., Guerra-Fuentes, R.A., Da Silva, A.A., Prudente, A.L., Pinto, R.R., Trefault., M.R., Bonatto, S.L. & Zaher, H. (2023) Revealing the cryptic diversity of the widespread and poorly known South American blind snake genus Amerotyphlops (Typhlopidae: Scolecophidia) through integrative taxonomy. Zoological Journal of the Linnean Society, 197 (3), 719–751. https://doi.org/10.1093/zoolinnean/zlac059
  18. Guedes, J.J., Gomes De Lima, H.V., Mendonça, L.R., Chen-Zhao, R., Diniz-Filho, J.A.F. & Moura, M.R. (2024) Temporal trends in global reptile species descriptions over three decades. Systematics and Biodiversity, 22 (1), 2419832. https://doi.org/10.1080/14772000.2024.2419832
  19. Guedes, J.J., Moura, M.R. & Diniz-Filho, J.A.F. (2023) Species out of sight: elucidating the determinants of research effort in global reptiles. Ecography, 2023 (3), e06491. https://doi.org/10.1111/ecog.06491
  20. Guedes, T.B., Entiauspe-Neto, O.M. & Costa, H.C. (2023) Lista de répteis do Brasil: atualização de 2022. Zenodo, 2023, 1–161. https://doi.org/10.5281/zenodo.7829013
  21. International Commission on Zoological Nomenclature (1999) International Code of Zoological Nomenclature. 4th Edition. International Trust for Zoological Nomenclature, London & Berkeley, 306 pp.
  22. Joly, C.A., Haddad, C.F.B., Verdade, L.M., de Oliveira, M.C. & Bolzani, R.G.D. (2011) Diagnóstico da pesquisa em biodiversidade no Brasil. Revista USP, 89, 114–133. https://doi.org/10.11606/issn.2316-9036.v0i89p114-133
  23. Köhler, G. (2012) Color Catalogue for Field Biologists. Herpeton, Offenbach, 89 pp.
  24. Lee, M.S. & Scanlon, J.D. (2002) Snake phylogeny based on osteology, soft anatomy and ecology. Biological Reviews, 77 (3), 333–401. https://doi.org/10.1017/S1464793102005924
  25. Maddison, W.P. & FitzJohn, R.G. (2015) The unsolved challenge to phylogenetic correlation tests for categorical characters. Systematic Biology, 64 (1), 127–136. https://doi.org/10.1093/sysbio/syu070
  26. Melo-Sampaio, P.R., Passos, P., Martins, A.R., Jennings, W.B., Moura-Leite, J.C., Morato, S.A.A., Venegas, P.J., Chávez, G., Venâncio, N.M. & Souza, M.B. (2021) A phantom on the trees: Integrative taxonomy supports a reappraisal of rear-fanged snakes’ classification (Dipsadidae: Philodryadini). Zoologischer Anzeiger, 290, 19–39. https://doi.org/10.1016/j.jcz.2020.10.008
  27. Moura, M.R., Costa, H.C., Peixoto, M.A., Carvalho, A.L., Santana, D.J. & Vasconcelos, H.L. (2018) Geographical and socioeconomic determinants of species discovery trends in a biodiversity hotspot. Biological Conservation, 220, 237–244. https://doi.org/10.1016/j.biocon.2018.01.024
  28. Padial, J.M., Miralles, A., De la Riva, I. & Vences, M. (2010) The integrative future of taxonomy. Frontiers in Zoology, 7 (1), 1–14. https://doi.org/10.1186/1742-9994-7-16
  29. Passos, P., Azevedo, J.A., Nogueira, C.C., Fernandes, R. & Sawaya, R.J. (2019) An integrated approach to delimit species in the puzzling Atractus emmeli complex (Serpentes: Dipsadidae). Herpetological Monographs, 33 (1), 1–25. https://doi.org/10.1655/0733-1347-33.1.1
  30. Peterson, C.R. & Dorcas, M.E. (1992) The use of automated data acquisition techniques in monitoring amphibian and reptile populations. In: McCullough, D.R. & Barrett, R.H. (Eds.), Wildlife 2001: Populations. Elsevier Applied Science, London, pp. 369–377. https://doi.org/10.1007/978-94-011-2868-1_30
  31. Poyarkov, N.A., Van Nguyen, T., Pawangkhanant, P., Yushchenko, P.V., Brakels, P., Nguyen, L.H., Nguyen, H.N., Suwannapoom, C., Orlov, N. & Vogel, G. (2022) An integrative taxonomic revision of slug-eating snakes (Squamata: Pareidae: Pareineae) reveals unprecedented diversity in Indochina. PeerJ, 10, e12713. https://doi.org/10.7717/peerj.12713
  32. Pyron, R.A., Burbrink, F.T. & Wiens, J.J. (2013) A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evolutionary Biology, 13, 93. https://doi.org/10.1186/1471-2148-13-93
  33. Pyron, R.A. (2017) Novel approaches for phylogenetic inference from morphological data and total-evidence dating in squamate reptiles (lizards, snakes, and amphisbaenians). Systematic Biology, 66 (1), 38–56. https://doi.org/10.1093/sysbio/syw068
  34. Rajabizadeh, M., Pyron, R.A., Nazarov, R., Poyarkov, N.A., Adriaens, D. & Herrel, A. (2020) Additions to the phylogeny of colubrine snakes in Southwestern Asia, with description of a new genus and species (Serpentes: Colubridae: Colubrinae). PeerJ, 8, e9016. https://doi.org/10.7717/peerj.9016
  35. Savage, J.M. & Slowinski, J.B. (1992) The colouration of the venomous coral snakes (family Elapidae) and their mimics (families Aniliidae and Colubridae). Biological Journal of the Linnean Society, 45 (3), 235–254. https://doi.org/10.1111/j.1095-8312.1992.tb00642.x
  36. Simões, T.R. & Pyron, R.A. (2021) The squamate tree of life. Bulletin of the Museum of Comparative Zoology, 163 (2), 47–95. https://doi.org/10.3099/0027-4100-163.2.47
  37. Singhal, S., Colston, T.J., Grundler, M.R., Smith, S.A., Costa, G.C., Colli, G.R., Moritz, C., Pyron, A.R. & Rabosky, D.L. (2021) Congruence and conflict in the higher-level phylogenetics of squamate reptiles: an expanded phylogenomic perspective. Systematic Biology, 70 (3), 542–557. https://doi.org/10.1093/sysbio/syaa054
  38. Trevine, V.C., Grazziotin, F.G., Giraudo, A., Sallaberry‐Pincheira, N., Vianna, J.A. & Zaher, H. (2022) The systematics of Tachymenini (Serpentes, Dipsadidae): an updated classification based on molecular and morphological evidence. Zoologica Scripta, 51 (6), 643–663. https://doi.org/10.1111/zsc.12565
  39. Uetz, P., Freed, P., Aguilar, R., Reyes, F., Kudera, J. & Hošek, J. (Eds.) (2025) The Reptile Database. Available from: http://www.reptile-database.org (accessed 8 August 2025)
  40. Uetz, P. & Stylianou, A. (2018) The original descriptions of reptiles and their subspecies. Zootaxa, 4375 (2), 257–264. https://doi.org/10.11646/zootaxa.4375.2.5
  41. Vitt, L.J. & Caldwell, J.P. (2013) Herpetology: an introductory biology of amphibians and reptiles. Academic Press, San Diego, California, 776 pp. https://doi.org/10.1016/B978-0-12-386919-7.00002-2
  42. Werner, F. (1921) Synopsis der Schlangenfamilie der Typhlopiden auf Grund des Boulenger’schen Schlangenkatalogs (1893–1896). Archiv für Naturgeschichte, Berlin, 87A (7), 266–338.
  43. Zaher, H., Murphy, R.W., Arredondo, J.C., Graboski, R., Machado-Filho, P.R., Mahlow, K., Montingelli, G.G., Quadros, A.B., Orlov, N.L., Wilkinson, M., Zhang, Y. & Grazziotin, F.G. (2019) Large-scale molecular phylogeny, morphology, divergence-time estimation, and the fossil record of advanced caenophidian snakes (Squamata: Serpentes). PLoS ONE, 14 (5), e0216148. https://doi.org/10.1371/journal.pone.0216148
  44. Zhang, Z.Q. (2021) Contributions of Zootaxa to biodiversity discovery: an overview of the first twenty years. Zootaxa, 4979 (1), 6–16. https://doi.org/10.11646/zootaxa.4979.1.3

How to Cite

Aquino, J., Lima, I.L.E., Costa, F.R. & Nunes, I. (2025) Trends in diagnostic characters of Snakes species (Squamata) in the first two decades of the 21st century. Zootaxa, 5689 (3), 439–450. https://doi.org/10.11646/zootaxa.5689.3.2