Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2025-09-04
Page range: 487-504
Abstract views: 148
PDF downloaded: 6

Bioluminescence, morphology, biological aspects and molecular association of larvae and adults of Stenophrixothrix (Coleoptera: Phengodidae)

Laboratório de Entomologia; Departamento de Zoologia; Instituto de Biologia; Universidade Federal do Rio de Janeiro; A1–107; Bloco A; Av. Carlos Chagas Filho; 373; Cidade Universitária; Ilha do Fundão; Rio de Janeiro; Brasil
Centro de Ciências e Tecnologias para Sustentabilidade (CCCTS) Universidade Federal de São Carlos (UFSCar); Campus de Sorocaba; Sorocaba; SP; Brasil
Centro de Ciências e Tecnologias para Sustentabilidade (CCCTS) Universidade Federal de São Carlos (UFSCar); Campus de Sorocaba; Sorocaba; SP; Brasil
Laboratório de Entomologia; Departamento de Zoologia; Instituto de Biologia; Universidade Federal do Rio de Janeiro; A1–107; Bloco A; Av. Carlos Chagas Filho; 373; Cidade Universitária; Ilha do Fundão; Rio de Janeiro; Brasil
Centro de Ciências e Tecnologias para Sustentabilidade (CCCTS) Universidade Federal de São Carlos (UFSCar); Campus de Sorocaba; Sorocaba; SP; Brasil
Coleoptera Immature stages Mastinocerinae Morphology Neotropical

Abstract

Railroad-worms (Phengodidae) occur in the Americas, Turkey and Middle East, but are especially diverse in the Neotropical region. In Brazil there are 63 described species, but except for Phrixothrix hirtus, larvae of described species could not be associated with their adults, due to the difficulty of rearing these beetles. In the campus of Sorocaba of the Universidade Federal de São Carlos, São Paulo, Brazil, we found a railroad-worm species inhabiting secondary growth forests, which was also found in other locations in the transition of Atlantic rainforest to Cerrado in São Paulo state. Here we describe the morphology of the larva of Stenophrixothrix sp., along with bioluminescence and ecological aspects of this species. The adult males were attracted to light traps and produce a yellow bioluminescence. The larva displays dark brown dorsal coloration, with yellow emitting lateral lanterns along the dorsal part of the body and a single small cephalic lantern which emits yellow to orange light. Analysis of the mitochondrial 16S marker shows that the larva and adults are indeed from the same species. Whereas the in vitro bioluminescence spectra for lateral and cephalic lanterns extracts overlap, suggesting the presence of a single luciferase isozyme, the in vivo bioluminescence color of the cephalic lantern changes from yellow to orange depending on the angle, probably due to the filtering effect caused by the highly sclerotized cuticle.

 

References

  1. Amaral, D.T., Silva, J.R. & Viviani, V.R. (2017) Transcriptional comparison of the photogenic and non‐photogenic tissues of Phrixothrix hirtus (Coleoptera: Phengodidae) and non‐luminescent Chauliognathus flavipes (Coleoptera: Cantharidae) give insights on the origin of lanterns in railroad worms. Gene Reports, 7, 78–86. https://doi.org/10.1016/j.genrep.2017.02.004
  2. Anisimova, M., Gil, M., Dufayard, J.F., Dessimoz, C. & Gascuel, O. (2011) Survey of branch support methods demonstrates accuracy, power, and robustness of fast likelihood‐based approximation schemes. Systematic Biology, 60, 685–699. https://doi.org/10.1093/sysbio/syr041
  3. Arnoldi, F.G., da Silva Neto, A.J. & Viviani, V.R. (2010) Molecular insights on the evolution of the lateral and head lantern luciferases and bioluminescence colors in Mastinocerini railroad‐worms (Coleoptera: Phengodidae). Photochemical & Photobiological Sciences, 9 (1), 87–92. https://doi.org/10.1039/b9pp00078j
  4. Avelino-Capistrano, F., Nessimian, J.L., Santos-Mallet, J.R. & Takiya, D.M. (2014) DNA-based identification and descriptions of immatures of Kempnyia Klapálek (Insecta: Plecoptera) from Macaé River Basin, Rio de Janeiro State, Brazil. Freshwater Science, 33 (1), 325–337. https://doi.org/10.1086/675226
  5. Barbosa, F.F., Mermudes, J.R.M. & Russo, C.A.M. (2024) Performance of tree-building methods using a morphological dataset and a well-supported Hexapoda phylogeny. PeerJ, 12, e16706. https://doi.org/10.7717/peerj.16706
  6. Bevilaqua, V.R., Matsuhashi, T., Oliveira, G., Oliveira, P.S.L., Hirano, T. & Viviani, V.R. (2019) Phrixotrix luciferase and 6′-aminoluciferins reveal a larger luciferin phenolate binding site and provide novel far-red combinations for bioimaging purposes. Scientific reports, 9 (1), 8998. https://doi.org/10.1038/s41598-019-44534-3
  7. Bi, W.X., He, J.W., Chen, C.C., Kundrata, R. & Li, X.Y. (2019) Sinopyrophorinae, a new subfamily of Elateridae (Coleoptera, Elateroidea) with the first record of a luminous click beetle in Asia and evidence for multiple origins of bioluminescence in Elateridae. ZooKeys, 864, 79–97. https://doi.org/10.3897/zookeys.864.26689
  8. Biffi, G. & Casari, S.A. (2017) Comparative morphology of immatures of neotropical Chauliognathinae (Coleoptera, Cantharidae). Zoologischer Anzeiger, 267, 111–138. https://doi.org/10.1016/j.jcz.2017.02.003
  9. Branham, M.A. (2010) Lampyridae Latreille, 1817. In: Leschen, R.A.B., Beutel, R.G. & Lawrence, J.F. (Eds.), Handbook of Zoology, Coleoptera, beetles morphology and systematics (Elateroidea, Bostrichiformia, Cucujiformia partim). Walter de Gruyter Gmb H & KG, Berlín and Nueva York, pp. 141–149. https://doi.org/10.1515/9783110911213.141
  10. Chen, M.H., Kuo, L. & Lewis, P.O. (2014) Bayesian phylogenetics: methods, algorithms and applications. Chapman & Hall/CRC, New York, New York, 396 pp. https://doi.org/10.1201/b16965
  11. Coelho, M.A., Mermudes, J.R.M. & Roza, A.S. (2024) Synopsis of Akamboja (Coleoptera: Phengodidae): new species, synonym, new records and remarks on abdominal morphology for the genus. Zootaxa, 5501 (1), 131–159. https://doi.org/10.11646/zootaxa.5501.1.6
  12. Constantin, R. (2014) Contribution à la connaissance des Phengodidae de Guyane et description de huit espèces nouvelles (Coleoptera, Elateroidea). Coléoptères de Guyane, 8, 86–104.
  13. Costa, C., Lawrence, J.F. & Rosa, S.P. (2010) Elateridae Leach, 1815. In: Leschen, R.A.B., Beutel, R.G. & Lawrence, J.F. (Eds.), Handbook of Zoology, Coleoptera, beetles morphology and systematics (Elateroidea, Bostrichiformia, Cucujiformia partim). Walter de Gruyter Gmb H & KG, Berlín and Nueva York, pp. 75–103. https://doi.org/10.1515/9783110911213.75
  14. Costa, C., Vanin, S.A. & Casari, S.A. (1988) Larvas de Coleoptera do Brasil. Museu de Zoologia, Universidade de São Paulo, São Paulo, 382 pp. https://doi.org/10.5962/bhl.title.100233
  15. Costa, C., Vanin, S.A. & Viviani, V.R. (1999) Larvae of Neotropical Coleoptera. XXVII. Phrixothrix hirtus Olivier, 1909, Descriptions of Immatures neotenic female, adult male and bionomic data (Phengodinae, Phengodidae, Coleoptera). Ilheringia, Série Zoologia, 86, 9–28.
  16. Costa, C. & Vanin, S.A. (2010) Coleoptera larval fauna associated with termite nests (Isoptera) with emphasis on the “bioluminescent termite nests” from Central Brazil. Psyche: A Journal of Entomology, 2010 (1), 723947. https://doi.org/10.1155/2010/723947
  17. Costa, C. & Zaragoza-Caballero, S. (2010) Phengodidae Le Conte. In: Leschen, R.A.B., Beutel, R.G. & Lawrence, J.F. (Eds.), Handbook of Zoology, Coleoptera, beetles morphology and systematics (Elateroidea, Bostrichiformia, Cucujiformia partim). Walter de Gruyter GmbH & KG, Berlín and Nueva York, pp. 126–135. https://doi.org/10.1515/9783110911213.126
  18. Felsenstein, J. (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolution, 17, 368–376. https://doi.org/10.1007/BF01734359
  19. Felsenstein, J. (2004) Inferring phylogenies. Second Edition. Sinauer Associates, Sunderland.
  20. Ferreira, V.S., Roza, A.S., Barbosa, F.F., Vega-Badillo, V., Zaragoza-Caballero, S., Mermudes, J.R.M., Ivie, M.A., Hansen, A.K., Brunke, A.J., Douglas, H.B., Solodovnikov, A. & Kundrata, R. (2024) Phylogenomics of Phengodidae (Coleoptera: Elateroidea): towards a natural classification of a bioluminescent and paedomorphic beetle lineage, with recognition of a new subfamily. Zoological Journal of the Linnean Society, 201, zlae093. https://doi.org/10.1093/zoolinnean/zlae093
  21. Gosset, W.S. (as “Student”) (1908) The probable error of a mean. Biometrika, 6, 1–25. https://doi.org/10.2307/2331554
  22. Gu, X., Fu, Y.X. & Li, W.H. (1995) Maximum likelihood estimation of the heterogeneity of substitution rate among nucleotide sites. Molecular Biology and Evolution, 12 (4), 546–557. https://doi.org/10.1093/oxfordjournals.molbev.a040235
  23. Guindon, S., Dufayard, J.F., Lefort, V., Anisimova, M., Hordijk, W. & Gascuel, O. (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology, 59 (3), 307–321. https://doi.org/10.1093/sysbio/syq010
  24. Hoang, D.T., Chernomor, O., von Haeseler, A., Minh, B.Q. & Vinh, L.S. (2018) UFBoot2: improving the ultrafast bootstrap approximation. Molecular Biology and Evolution, 35 (2), 518–522. https://doi.org/10.1093/molbev/msx281
  25. Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K.F., von Haeseler, A. & Jermiin, L.S. (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods, 14, 587–589. https://doi.org/10.1038/nmeth.4285
  26. Kapli, P., Lutteropp, S., Zhang, J., Kobert, K., Pavlidis, P., Stamatakis, A. & Flouri, T. (2017) Multi-rate Poisson tree processes for single locus species delimitation under maximum likelihood and Markov chain Monte Carlo. Bioinformatics, 33 (11), 1630–1638. https://doi.org/10.1093/bioinformatics/btx025
  27. Katoh, K. & Standley, D.M. (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution, 30, 772–780. https://doi.org/10.1093/molbev/mst010
  28. Kawashima, I., Lawrence, J.F. & Branham, M.A. (2010) Rhagophthalmidae Olivier, 1907. In: Leschen, R.A.B., Beutel, R.G. & Lawrence, J.F. (Eds.), Handbook of Zoology, Coleoptera, beetles morphology and systematics (Elateroidea, Bostrichiformia, Cucujiformia partim). Walter de Gruyter Gmb H & KG, Berlín and Nueva York, pp. 135–140. https://doi.org/10.1515/9783110911213.135
  29. Kimura, M. (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16 (2), 111–120. https://doi.org/10.1007/BF01731581
  30. Kundrata, R., Blank, S.M., Prosvirov, A.S., Sormova, E., Gimmel, M.L., Vondráček, D. & Kramp, K. (2019) One less mystery in Coleoptera systematics: the position of Cydistinae (Elateriformia incertae sedis) resolved by multigene phylogenetic analysis. Zoological Journal of the Linnean Society, 187 (4), 1259–1277. https://doi.org/10.1093/zoolinnean/zlz104
  31. Kundrata, R., Hoffmannova, J., Hinson, K.R., Keller, O. & Packova, G. (2022) Rhagophthalmidae Olivier, 1907 (Coleoptera, Elateroidea): described genera and species, current problems, and prospects for the bioluminescent and paedomorphic beetle lineage. ZooKeys, 1126, 55. https://doi.org/10.3897/zookeys.1126.90233
  32. Kusy, D., He, J.W., Bybee, S.M., Motyka, M., Bi, W.X., Podsiadlowski, L., Li, X. & Bocak, L. (2021) Phylogenomic relationships of bioluminescent elateroids define the ‘lampyroid’ clade with clicking Sinopyrophoridae as its earliest member. Systematic Entomology, 46 (1), 111–123. https://doi.org/10.1111/syen.12451
  33. Lawrence, J.F., Bocak, L., Bocakova, M., Beutel, R. & Muona, J. (2010) Elateroidea. In: Leschen, R.A.B., Beutel, R.G. & Lawrence, J.F. (Eds.), Handbook of Zoology, Coleoptera, beetles morphology and systematics (Elateroidea, Bostrichiformia, Cucujiformia partim). Walter de Gruyter Gmb H & KG, Berlín and Nueva York, pp. 35–38. https://doi.org/10.1515/9783110911213.35
  34. Letunic, I. & Bork, P. (2021) Interactive tree of life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Research, 49 (W1), W293–W296. https://doi.org/10.1093/nar/gkab301
  35. Lewis, S.M. & Cratsley, C.K. (2008) Flash signal evolution, mate choice, and predation in fireflies. Annual Review of Entomology, 53 (1), 293–321. https://doi.org/10.1146/annurev.ento.53.103106.093346
  36. Lloyd, J.E. (1969) Flash behavior of fireflies: a mimicry hypothesis. Science, 164 (3882), 1193–1195. https://doi.org/10.1126/science.164.3882.1193
  37. Lloyd, J.E. (1983) Bioluminescence and communication in insects. Annual Review of Entomology, 28 (1), 131–160. https://doi.org/10.1146/annurev.en.28.010183.001023
  38. Marek, P.E., Moore, W. & Bond, J.E. (2011) Molecular phylogeny reveals relationships of millipedes in the order Xystodesmidae, a clade of North American millipedes that emit cyanide. Molecular Phylogenetics and Evolution, 61 (2), 401–407. https://doi.org/10.1016/j.ympev.2011.06.018
  39. Minh, B.Q., Schmidt, H.A., Chernomor, O., Schrempf, D., Woodhams, M.D., von Haeseler, A. & Lanfear, R. (2020) IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution, 37 (5), 1530–1534. https://doi.org/10.1093/molbev/msaa015
  40. Padial, J.M., Miralles, A., De la Riva, I. & Vences, M. (2010) The integrative future of taxonomy. Frontiers in Zoology, 7, 16. https://doi.org/10.1186/1742-9994-7-16
  41. Puillandre, N., Lambert, A., Brouillet, S. & Achaz, G. (2012) ABGD, automatic barcode gap discovery for primary species delimitation. Molecular Ecology, 21 (8), 1864–1877. https://doi.org/10.1111/j.1365-294X.2011.05239.x
  42. Puillandre, N., Brouillet, S. & Achaz, G. (2021) ASAP: assemble species by automatic partitioning. Molecular Ecology Resources, 21 (2), 609–620. https://doi.org/10.1111/1755-0998.13281
  43. Quintino, H.Y.S. & Roza, A.S. (2024) Phengodidae in Catálogo Taxonômico da Fauna do Brasil. Available from: http://fauna.jbrj.gov.br/fauna/faunadobrasil/126405 (accessed 16 October 2024)
  44. Ratnasingham, S. & Hebert, P.D.N. (2013) A DNA-based registry for all animal species: the barcode index number (BIN) system. PLoS ONE, 8 (7), e66213. https://doi.org/10.1371/journal.pone.0066213
  45. Raupach, M.J., Hannig, K., Morinière, J. & Hendrich, L. (2016) A DNA barcode library for ground beetles (Insecta, Coleoptera, Carabidae) of Germany: the genus Bembidion Latreille, 1802 and allied taxa. ZooKeys, 592, 121–141. https://doi.org/10.3897/zookeys.592.8316
  46. Redford, K.H. (1982) Prey attraction as a possible function of bioluminescence in the larvae of Pyrearinus termitilluminans (Coleoptera: Elateridae). Revista Brasileira de Zoologia, 1, 31–34. https://doi.org/10.1590/S0101-81751982000100004
  47. Roza, A.S., Quintino, H.Y.S., Mermudes, J.R.M. & Silveira, L.F.L. (2017) Akamboja gen. nov., a new genus of railroad‐worm beetle endemic to the Atlantic Rainforest, with five new species (Coleoptera: Phengodidae, Mastinocerinae). Zootaxa, 4306 (4), 501–523. https://doi.org/10.11646/zootaxa.4306.4.3
  48. Roza, A.S., Mermudes, J.R.M. & Silveira, L.F.L. (2018) New species and rediagnosis of Akamboja, and a new record for A. minimum (Coleoptera: Phengodidae, Mastinocerinae). Journal of Natural History, 52 (45–46), 2935–2947. https://doi.org/10.1080/00222933.2018.1559958
  49. Roza, A.S. & Mermudes, J.R.M. (2019) New genus and two new species of railroad‐worm beetles from Brazil, with a discussion on asymmetry of aedeagus in the family (Coleoptera: Phengodidae). Annales Zoologici, 69 (4), 805–816. https://doi.org/10.3161/00034541ANZ2019.69.4.012
  50. Roza, A.S. & Mermudes, J.R.M. (2020) A new genus of railroad‐worm beetles from the Atlantic Rainforest from Brazil (Coleoptera: Phengodidae, Mastinocerinae). Papéis Avulsos de Zoologia, 60, e202060(s.i.).10. https://doi.org/10.11606/1807-0205/2020.60.special-issue.10
  51. Schwarz, G. (1978) Estimating the dimension of a model. Annals of Statistics, 6 (2), 461–464. https://doi.org/10.1214/aos/1176344136
  52. Takenaka, M., Shintani, Y., Watanabe, Y. & Oba, Y. (2023) Phylogenetic relationships and species delimitation in Japanese fireflies inferred from multi-locus DNA barcoding. Zoological Science, 40 (1), 20–30. https://doi.org/10.2108/zs220053
  53. Tamura, K., Stecher, G. & Kumar, S. (2021) MEGA11: Molecular Evolutionary Genetics Analysis version 11. Molecular Biology and Evolution, 38 (7), 3022–3027. https://doi.org/10.1093/molbev/msab120
  54. Tavaré, S. (1986) Some probabilistic and statistical problems in the analysis of DNA sequences. Lectures on Mathematics in the Life Sciences, 17, 57–86.
  55. Tiemann, D.L. (1967) Observations on the natural history of the western banded glowworm Zarhipis integripennis (LeConte) (Coleoptera: Phengodidae). Proceedings of the California Academy of Sciences, 35 (4), 235–264, pls. 4
  56. Vega-Badillo, V., Zaragoza-Caballero, S. & Ivie, M.A. (2020) A new genus of Phengodidae (Coleoptera) from the Neotropical Region. Papéis Avulsos de Zoologia, 60, e202060-si. https://doi.org/10.11606/1807-0205/2020.60.special-issue.06
  57. Viviani, V.R. & Bechara, E.J. (1993) Biophysical and biochemical aspects of phengodid (railroad‐worm) bioluminescence. Photochemistry and photobiology, 58 (4), 615–622. https://doi.org/10.1111/j.1751-1097.1993.tb04941.x
  58. Viviani, V.R. & Bechara, E.J. (1997) Bioluminescence and biological aspects of Brazilian railroad‐worms (Coleoptera: Phengodidae). Annals of the Entomological Society of America, 90 (3), 389–398. https://doi.org/10.1093/aesa/90.3.389
  59. Viviani, V.R., Bechara, E.J. & Ohmiya, Y. (1999) Cloning, sequence analysis, and expression of active Phrixothrix railroad‐worms luciferases: relationship between bioluminescence spectra and primary structures. Biochemistry, 38 (26), 8271–8279. https://doi.org/10.1021/bi9900830
  60. Viviani, V.R. & Santos, R.M.D. (2012) Bioluminescent Coleoptera of Biological Station of Boracéia (Salesópolis, SP, Brazil): diversity, bioluminescence and habitat distribution. Biota Neotropica, 12, 21–34. https://doi.org/10.1590/S1676-06032012000300001
  61. Viviani, V.R., Rosa, S.P., Prado, R.A., Pelentir, G.F., de Souza, D.R., Reis, R.M., Bechara, E.J.H. & Costa, C. (2023) Inventory and ecological aspects of bioluminescent beetles in the Cerrado ecosystem and its decline around Emas National Park (Brazil). Annals of the Entomological Society of America, 116 (6), 386–403. https://doi.org/10.1093/aesa/saad029
  62. Viviani, V.R., Benites, G.R., Souza, D.R., Pelentir, G.F., Reis, R.M., Bechara, E.J. & Tomazini, A. (2024) The orange light emitting luciferase from the rare Euryopa clarindae adult railroadworm (Coleoptera: Phengodidae): structural/functional and evolutionary relationship with green and red emitting luciferases. Photochemical & Photobiological Sciences, 23 (2), 257–269. https://doi.org/10.1007/s43630-023-00515-0
  63. Wilson, T. & Hastings, J.W. (1998) Bioluminescence. Annual Review of Cell and Developmental Biology, 14, 197–230. https://doi.org/10.1146/annurev.cellbio.14.1.197
  64. Wittmer, W. (1963) Zur Kenntnis der Phengodidae. Mitteilungen der Schweizerischen Entomologischen Gesellschaft, 36, 73–99.
  65. Wittmer, W. (1976) Arbeiten zu einer Revision der Familie Phengodidae (Coleoptera). Entomologische Arbeiten aus dem Museum Frey, 27, 415–524.
  66. Zhang, J., Kapli, P., Pavlidis, P. & Stamatakis, A. (2013) A general species delimitation method with applications to phylogenetic placements. Bioinformatics, 29 (22), 2869–2876. https://doi.org/10.1093/bioinformatics/btt499
  67. Zaragoza-Caballero, S. & Pérez-Hernández, C.X. (2014) Sinopsis de la familia Phengodidae (Coleoptera): trenecitos, bigotudos, glow-worms, railroad-worms o besouros trem de ferro. Universidad Nacional Autónoma de México, México City, 128 pp. https://doi.org/10.22201/ib.9786070251832e.2014

How to Cite

Roza, A.S., Souza, D.R.D., Pelentir, G.F., Barbosa, F.F., Mermudes, J.R.M. & Viviani, V.R. (2025) Bioluminescence, morphology, biological aspects and molecular association of larvae and adults of Stenophrixothrix (Coleoptera: Phengodidae). Zootaxa, 5689 (3), 487–504. https://doi.org/10.11646/zootaxa.5689.3.4