Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2025-09-26
Page range: 451-481
Abstract views: 620
PDF downloaded: 7

Hidden diversity in Daptomys (Rodentia: Cricetidae): a new species from lower montane forests of central Peru

Departamento de Mastozoología; Museo de Historia Natural; Universidad Nacional Mayor de San Marcos; Av. Arenales 1256; Lima 15072; Perú.
Departamento de Mastozoología; Museo de Historia Natural; Universidad Nacional Mayor de San Marcos; Av. Arenales 1256; Lima 15072; Perú.; Programa de Doctorado en Ciencias mención Ecología y Evolución; Escuela de Graduados; Facultad de Ciencias; Universidad Austral de Chile; Valdivia 5090000; Chile.
Servicio Nacional de Áreas Naturales Protegidas por el Estado (SERNANP). Sede Central; Calle Diecisiete 355; Urb. El Palomar; San Isidro; Lima 15036; Perú.
Biosfera Consultores Ambientales; Calle Las Fresas 730; Miraflores; Lima 15048; Perú.
Instituto de Ciencias Marinas y Limnológicas; Universidad Austral de Chile; Campus Isla Teja s/n; Valdivia 5090000; Chile.; Facultad de Ingeniería en Industrias Alimentarias y Biotecnología; Universidad Nacional de Frontera; Av. San Hilarión N° 101; Nueva Sullana; Sullana—Piura—Perú.
Mammalia Daptomys Tingo María National Park Peru

Abstract

Daptomys Anthony, 1929, comprises at least five species, distributed in lower and premontane Neotropical forests from Venezuela to Bolivia, but its real diversity is likely underestimated. During recent expeditions to Tingo María National Park, Huánuco Department, in central Peru, we collected two specimens of Daptomys in premontane forest, that represent a new lineage. Here, we present an integrative approach combining coalescent phylogenetic analyses (based on cytochrome b and three nuclear gene sequences), along with morphological and morphometric data, to support the recognition of the Huánuco specimens as a new species of Daptomys, which we describe in this paper. The new species can be distinguished from other congeners by a unicolored tail ending in a distinct pencil of white hairs, a very small toothrow, anteriorly expanded nasals, a very short incisive foramina, a long palate with a prominent median process, and a large postglenoid foramen. In addition, the species delimitation methods recovered D. musseri as a valid species which is supported also by morphological and morphometric differentiation and distribution pattern.

 

References

  1. Anderson, S. (1997) Mammals of Bolivia, taxonomy and distribution. Bulletin of the American Museum of Natural History, 231, 1–652.
  2. Anthony, H.E. (1921) Preliminary report on Ecuadorean mammals. No 1. American Museum Novitates, 20, 1–6.
  3. Anthony, H.E. (1929) Two genera of rodents from South America. American Museum Novitates, 383, 1–6.
  4. Baker, R.J. & Bradley, R.D. (2006) Speciation in mammals and the genetic species concept. Journal of Mammalogy, 87, 643–662. https://doi.org/10.1644/06-MAMM-F-038R2.1
  5. Bouckaert, R., Vaughan, T.G., Barido-Sottani, J., Duchêne, S., Fourment, M., Gavryushkina, A., Heled, J., Jones, G., Kühnert, D., De Maio, N., Matschiner, M., Mendes, F.K., Müller, N.F., Ogilvie, H.A., Du Plessis, L., Popinga, A., Rambaut, A., Rasmussen, D., Siveroni, I., Suchard, M.A., Wu, C.-H., Xie, D., Zhang, C., Stadler, T. & Drummond, A.J. (2019) BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Computational Biology, 15 (4), e1006650. https://doi.org/10.1371/journal.pcbi.1006650
  6. Bradley, R.D. & Baker, R.J. (2001) A test of the genetic species concept: cytochrome-b sequences and mammals. Journal of Mammalogy, 82, 960–973. https://doi.org/10.1644/1545-1542(2001)082%3C0960:ATOTGS%3E2.0.CO;2
  7. Braga, C. & Duda, R. (2017) New records and phylogenetic position of Neusticomys ferreirai (Rodentia: Cricetidae) Percequillo, Carmignoto and Silva, 2005 from the Amazon basin, northern Brazil. Mammalia, 81 (6), 635–639. https://doi.org/10.1515/mammalia-2016-0095
  8. Brito, J., Vega-Yánez, M.A., Guaya-Ramos, J.P., Polo, M., Koch, C., Tinoco, N. & Pardiñas, U.F.J. (2025) Soft anatomy and morphological variation in Daptomys peruviensis (Rodentia, Cricetidae), a rare ichthyomyine from the northwestern Amazonian forests. PeerJ, 13, e18997. https://doi.org/10.7717/peerj.18997
  9. Britto, B. (2017) Actualización de las ecorregiones terrestres de Perú propuestas en el Libro Rojo de plantas endémicas del Perú. Gayana Botanica, 74, 15–29. https://doi.org/10.4067/S0717-66432017005000318
  10. Catzeflis, F., de Thoisy, B., Ferreira da Silva M.N. & da Silva, C.R. (2017) Molar polymorphism and variation in tooth number in a semi-aquatic rodent, Neusticomys oyapocki (Sigmodontinae, Ichthyomyini). Mastozoología Neotropical, 24 (1), 85–94.
  11. Cockerell, T.D.A., Miller, L.I. & Printz, M. (1914) The auditory ossicles of American rodents. Bulletin of the American Museum of Natural History, 33 (28), 347–380.
  12. Díaz-Nieto, J.F. & Voss, R.S. (2016) A revision of the didelphid marsupial genus Marmosops, part 1. Species of the subgenus Sciophanes. Bulletin of the American Museum of Natural History, 402, 1–70. https://doi.org/10.1206/0003-0090-402.1.1
  13. Douglas, J., Jiménez-Silva, C.L. & Bouckaert, R. (2022) StarBeast3: adaptive parallelized Bayesian inference under the multispecies coalescent. Systematic Biology, 71 (4), 901–916. https://doi.org/10.1093/sysbio/syac010
  14. Dubost, G. & Petter, F. (1979) Une espèce nouvelle de “rat- pêcheur” de Guyane française: Daptomys oyapocki sp. nov. (Rongeurs, Cricetidae). Mammalia, 42 (4), 435–439. https://doi.org/10.1515/mamm.1978.42.4.435
  15. Fernández de Córdova, J., Nivelo-Villavicencio, C., Reyes-Puig, C., Pardiñas, U.F.J. & Brito, J. (2020) A new species of crab-eating rat of the genus Ichthyomys, from Ecuador (Rodentia, Cricetidae, Sigmodontinae). Mammalia, 84 (4), 377–391. https://doi.org/10.1515/mammalia-2019-0022
  16. Flouri, T., Jiao, X., Rannala, B. & Yang, Z. (2018) Species tree inference with BPP using genomic sequences and the multispecies coalescent. Molecular Biology and Evolution, 35 (10), 2585–2593. https://doi.org/10.1093/molbev/msy147
  17. Fujita, M.K., Leaché, A.D., Burbrink, F.T., McGuire, J.A. & Moritz, C. (2012) Coalescent-based species delimitation in an integrative taxonomy. Trends in Ecology & Evolution, 27 (9), 480–488. https://doi.org/10.1016/j.tree.2012.04.012
  18. Hanson, J.D., D’Elía G., Ayers, S.B., Cox, S.B., Burneo S.F. & Lee Jr., T.E. (2015) A new species of fish-eating rat, genus Neusticomys (Sigmodontinae), from Ecuador. Zoological Studies, 54 (49), 1–11. https://doi.org/10.1186/s40555-015-0126-7
  19. Hershkovitz, P. (1962) Evolution of Neotropical cricetine rodents (Muridae), with special reference to the phyllotine group. Fieldiana Zoology, Chicago Museum Natural History, 46, 1–524. https://doi.org/10.5962/bhl.title.2781
  20. Huang, J.P. & Knowles, L.L. (2016) The species versus subspecies conundrum: quantitative delimitation from integrating multiple data types within a single Bayesian approach in Hercules beetles. Systematic Biology, 65 (4), 685–699. https://doi.org/10.1093/sysbio/syv119
  21. Jenkins, P.D. & Barnett, A.A. (1997) A new species of water mouse of the genus Chibchanomys (Rodentia: Muridae: Sigmodontinae) from Ecuador. Bulletin of the Natural History Museum, London, Zoology, 63, 123–128.
  22. Katoh, K. & Standley, D.M. (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution, 30 (4), 772–780. https://doi.org/10.1093/molbev/mst010
  23. Katoh, K., Kuma, K.I., Toh, H. & Miyata, T. (2005) MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Research, 33 (2), 511–518. https://doi.org/10.1093/nar/gki198
  24. Kimura, M. (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16 (2), 111–120. https://doi.org/10.1007/BF01731581
  25. Leaché, A.D. & Fujita, M.K. (2010) Bayesian species delimitation in West African forest geckos (Hemidactylus fasciatus). Proceedings of the Royal Society B: Biological Sciences, 277 (1697), 3071–3077. https://doi.org/10.1098/rspb.2010.0662
  26. Lee, T.E., Alvarado-Serrano, D., Platt, R.N. & Goodwiler, G.G. (2006) Report on a mammal survey of the Cosanga River drainage, Ecuador. Occasional Papers Museum Texas Tech University, 260, 1–10. https://doi.org/10.5962/bhl.title.156965
  27. Lewis, P.O. (2001) A likelihood approach to estimating phylogeny from discrete morphological character data. Systematic Biology, 50 (6), 913–925. https://doi.org/10.1080/106351501753462876
  28. Martin, Y., Gerlach, G., Schlotter, C. & Meyer, A. (2000) Molecular phylogeny of European muroid rodents based on complete cytochrome-b sequences. Molecular Phylogenetic and Evolution, 16 (1), 37–47. https://doi.org/10.1006/mpev.1999.0760
  29. Medina, C.E., López, E., Pino, K., Pari, A. & Zeballos, H. (2015) Biodiversidad de la Zona Reservada Sierra del Divisor (Perú): una visión desde los mamíferos pequeños. Revista Peruana de Biología, 22 (2), 199–212. https://doi.org/10.15381/rpb.v22i2.11354
  30. Miranda, C.L., Rossi, R.V., Semedo, T.B.F. & Flores, T.A. (2012) New records and geographic distribution extension of Neusticomys ferreirai and N. oyapocki (Rodentia, Sigmodontinae). Mammalia, 76 (3), 335–339. https://doi.org/10.1515/mammalia-2011-0114
  31. Musser, G.G. & Gardner, A.L. (1974) A new species of the ichthyomyine Daptomys from Peru. American Museum Novitates, 2537, 1–23.
  32. Nguyen, L., Schmidt, T., Von Haeseler, H.A. & Minh, B.Q. (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32 (1), 268–274. https://doi.org/10.1093/molbev/msu300
  33. Nunes, A. (2002) First record of Neusticomys oyapocki (Muridae: Sigmodontinae) from the Brazilian Amazon. Mammalia, 66, 445–447.
  34. Ochoa, G. & Soriano, P. (1991) A new species of water rat, genus Neusticomys Anthony, from the Andes of Venezuela. Journal of Mammalogy, 72 (1), 97–103. https://doi.org/10.2307/1381983
  35. Pacheco, V., Sánchez-Vendizú P., Loaiza Salazar C.R., Pino K., Medina C. & Vivas-Ruiz D. (2020) A revision of Neusticomys peruviensis (Rodentia: Cricetidae) with the description of a new subspecies. Journal of Mammalogy, 101 (3), 858–871. https://doi.org/10.1093/jmammal/gyaa011
  36. Pacheco, V. & Ugarte-Nuñez, J. (2011) New records of Stolzmann’s fish-eating rat Ichthyomys stolzmanni (Cricetidae, Sigmodontinae) in Peru: A rare species becoming a nuisance. Mammalian Biology, 76 (5), 657–661. https://doi.org/10.1016/j.mambio.2010.10.007
  37. Pacheco, V. & Vivar, E. (1996) Annotated checklist of the nonflying mammals at Pakitza, Manu Reserve Zone, Manu National Park, Perú. In: Wilson, D.E. & Sandoval, A. (Eds.), Manu, the biodiversity of southeastern Peru. Smithsonian Institution and Editorial Horizonte, Washington, D.C., pp. 577–591.
  38. Packer, J.B. & Lee, T.E. (2007) Neusticomys monticolus. Mammalian Species, 805, 1–3. https://doi.org/10.1644/805.1
  39. Padial, J.M., Miralles A., de la Riva I. & Vences M. (2010) The integrative future of taxonomy. Frontiers in Zoology, 7 (1), 1–14. https://doi.org/10.1186/1742-9994-7-16
  40. Parada, A., Pardiñas, U.F., Salazar-Bravo, J., D’Elía, G. & Palma, R.E. (2013) Dating an impressive Neotropical radiation: molecular time estimates for the Sigmodontinae (Rodentia) provide insights into its historical biogeography. Molecular phylogenetics and Evolution, 66 (3), 960–968. https://doi.org/10.1016/j.ympev.2012.12.001
  41. Pavan, S.E., Abreu, E.F., Sánchez-Vendizú, P.Y., Batista, R., Murta-Fonseca, R.A., Pradel, R., Rengifo, E.M., Leo, M., Pacheco, V., Aleixo, A., Percequillo, A.R. & Peloso, P. (2024) A hint on the unknown diversity of eastern Andes: high endemicity and new species of mammals revealed through DNA barcoding. Systematics and Biodiversity, 22 (1). [published online] https://doi.org/10.1080/14772000.2024.2302196
  42. Percequillo, A.R., Carmignotto, A.P. & da Silva, M.J. (2005) A new species of Neusticomys (Ichthyomyini, Sigmodontinae) from central Brazilian Amazonia. Journal of Mammalogy, 86 (5), 873–880. https://doi.org/10.1644/1545-1542(2005)86[873:ANSONI]2.0.CO;2
  43. Percequillo, A.R., Dalapicolla, J., Abreu-Júnior, E.F., Roth, P.R.O., Ferraz, K.M.P.M.B. & Chiquito, E.A. (2017) How many species of mammals are there in Brazil? New records of rare rodents (Rodentia: Cricetidae: Sigmodontinae) from Amazonia raise the current known diversity. PeerJ, 5, e4071. https://doi.org/10.7717/peerj.4071
  44. Rabiee, M., Sayyari, E. & Mirarab, S. (2019) Multi-allele species reconstruction using ASTRAL. Molecular Phylogenetics and Evolution, 130, 286–296. https://doi.org/10.1016/j.ympev.2018.10.033
  45. Rambaut, A., Drummond, A.J., Xie, D., Baele, G. & Suchard, M.A. (2018) Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology, 67 (5), 901–904. https://doi.org/10.1093/sysbio/syy032
  46. Reig, O.A. (1977) A proposed unified nomenclature for the enameled components of the molar teeth of the Cricetidae (Rodentia). Journal of Zoology, 181, 227–241. https://doi.org/10.1111/j.1469-7998.1977.tb03238.x
  47. Rodríguez-Posada, M.E. (2014) Primer registro del ratón de agua del Táchira, Neusticomys mussoi (Rodentia, Cricetidae) en Colombia. Mastozoología Neotropical, 21 (2), 367–372.
  48. Salazar-Bravo, J., Tinoco, N., Zeballos, H., Brito, J., Arenas-Viveros, D., Marín-C, D., Ramírez-Fernández, J.D., Percequillo, A.R., Lee Jr., T.E., Solari, S., Colmenares-Pinzon, J., Nivelo, C., Rodríguez Herrera, B., Merino, W., Medina, C.E., Murillo-García, O. & Pardiñas, U.F.J. (2023) Systematics and diversification of the Ichthyomyini (Cricetidae, Sigmodontinae) revisited: evidence from molecular, morphological, and combined approaches. PeerJ, 11, e14319. https://doi.org/10.7717/peerj.14319
  49. Sánchez-Vendizú, P., Pacheco, V. & Vivas-Ruiz, D. (2018) An introduction to the systematics of small-bodied Neacomys (Rodentia: Cricetidae) from Peru with descriptions of two new species. American Museum Novitates, 3913, 1–38. https://doi.org/10.1206/3913.1
  50. Sayyari, E. & Mirarab, S. (2016) Fast coalescent-based computation of local branch support from quartet frequencies. Molecular Biology and Evolution, 33 (7), 1654–1668. https://doi.org/10.1093/molbev/msw079
  51. Sikes, R.S. & the Animal Care and Use Committee of the American Society of Mammalogists. (2016) Guidelines of the American Society of Mammalogists for the use of wild mammals in research and education. Journal of Mammalogy, 97 (3), 663–688. https://doi.org/10.1093/jmammal/gyw078
  52. Smith, M.F. & Patton, J.L. (1993) The diversification of South America murid rodents: evidence from mitochondrial DNA sequence data for the akodontine tribe. Biological Journal of the Linnean Society, 50 (3), 149–177. https://doi.org/10.1111/j.1095-8312.1993.tb00924.x
  53. Smithe, F.B. (1975) Naturalist’s color guide. American Museum of Natural History, New York, New York, 229 pp.
  54. Steppan, S.J. & Schenk, J.J. (2017) Muroid rodent phylogenetics: 900-species tree reveals increasing diversification rates. PLoS ONE, 12 (8), e0183070. https://doi.org/10.1371/journal.pone.0183070
  55. Thompson, J.D., Plewniak, T.J., Jeanmougin, F. & Higgins, D.G. (1997) The ClustalX-Windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acid Research, 25 (24), 4876–4882. https://doi.org/10.1093/nar/25.24.4876
  56. Tirira, D.G. (2017) Mamíferos del Ecuador: guía de campo. Ediciones Murciélago Blanco, Quito, 600 pp.
  57. Voss, R.S. (1988) Systematics and ecology of Ichthyomyine rodents (Muroidea): patterns of morphological evolution in a small adaptive radiation. Bulletin of the American Museum of Natural History, 188, 1–493.
  58. Voss, R.S. (2015) Tribe Ichthyomyini Vorontsov, 1959. In: Patton, J.L., Pardiñas, U.F.J. & D’Elía, G. (Eds.), Mammals of South America, Vol. 2, Rodents. The University of Chicago Press, Chicago, pp. 279–290.
  59. Voss, R.S. & Giarla, T.C. (2021) A revision of the didelphid marsupial genus Marmosa Part 3. A new species from western Amazonia, with redescriptions of M. perplexa Anthony, 1922, and M. germana Thomas, 1904. American Museum Novitates, 3969, 1–28. https://doi.org/10.1206/3969.1
  60. Voss, R.S., Lunde, D.P. & Simmons, N.B. (2001) The mammals of Paracou, French Guiana: a Neotropical lowland rainforest fauna Part 2, Non volant species. Bulletin of the American Museum of Natural History, 263, 1–236. https://doi.org/10.1206/0003-0090(2001)263%3C0003:TMOPFG%3E2.0.CO;2
  61. Zeballos, H., Pari, A., Medina, C.E., Pino, K., Arias, S., Arce, A.L. & Gonzales, F.N. (2025) Description of a New Genus and Species of Semi-Aquatic Rodent (Cricetidae, Sigmodontinae, Ichthyomyini) from the Southern Peruvian Andes. Diversity, 17 (6), 406. https://doi.org/10.3390/d17060406
  62. Zhang, C., Rabiee, M., Sayyari, E. & Mirarab, S. (2018) ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinformatics, 19 (6), 15–30. https://doi.org/10.1186/s12859-018-2129-y

How to Cite

Pacheco, V., Sánchez-Vendizú, P., Fajardo, Úrsula, Cossíos, D. & Cadenillas, R. (2025) Hidden diversity in Daptomys (Rodentia: Cricetidae): a new species from lower montane forests of central Peru. Zootaxa, 5696 (4), 451–481. https://doi.org/10.11646/zootaxa.5696.4.1