Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2025-10-14
Page range: 501-529
Abstract views: 54
PDF downloaded: 1

Integrative taxonomy reveals mitochondrial introgression and Pleistocene diversification in Palearctic Agnocoris species (Insecta: Heteroptera: Miridae)

Laboratory of Insect Taxonomy; Zoological Institute; Russian Academy of Sciences; Saint Petersburg; Russia; Laboratory of Phytosanitary Diagnostics and Forecasts; All-Russian Institute of Plant Protection; Pushkin; Saint Petersburg; Russia
Laboratory of Insect Taxonomy; Zoological Institute; Russian Academy of Sciences; Saint Petersburg; Russia; Laboratory of Phytosanitary Diagnostics and Forecasts; All-Russian Institute of Plant Protection; Pushkin; Saint Petersburg; Russia
Hemiptera Agnocoris Miridae Palearctic

Abstract

The genus Agnocoris (Heteroptera: Miridae: Mirinae: Mirini) includes seven species and three of them, A. rubicundus, A. reclairei, and A. eduardi, are distributed in the Palearctic. This study represents the first integrative taxonomic assessment of Palearctic Agnocoris, combining morphological and molecular data (COI, 16S rRNA, ITS1, Ca-ATPase) to clarify species boundaries, phylogenetic relationships, and biogeographic history. This study showed that the three Palearctic species are very similar to each other externally, and male and female genitalia structures should be used for the correct species identification. A revised diagnosis and identification key for Palearctic Agnocoris representatives, as well as novel characters that can be used for the generic diagnosis, are provided. Phylogenetic analyses revealed discordance between mitochondrial and nuclear markers: mitochondrial data did not support the monophyly of A. rubicundus and A. reclairei, while nuclear markers confirmed their distinctiveness, suggesting historical mitochondrial introgression likely due to hybridization. The results showed that ITS1 was the most effective for the species identification and delimitation. Species delimitation methods based on this marker validated both species as separate. Divergence dating analysis suggests that Nearctic and Palearctic lineages of Agnocoris separated in Miocene. Our analysis demonstrated that A. rubicundus and A. reclairei most probably diverged ca. 1 Mya during the Pleistocene. Our findings emphasize the importance of integrative approach combining thorough morphological examinations and multiple genetic markers for accurate species delimitation in Miridae.

 

References

  1. Abe, T.A., Spence, J.R. & Sperling, F.A. (2005) Mitochondrial introgression is restricted relative to nuclear markers in a water strider (Hemiptera: Gerridae) hybrid zone. Canadian Journal of Zoology, 83 (3), 432–444. https://doi.org/10.1139/z05-030
  2. Andersen, J.C., Havill, N.P., Mannai, Y., Ezzine, O., Dhahri, S., Ben Jamâa, M.L. & Elkinton, J.S. (2019) Identification of winter moth (Operophtera brumata) refugia in North Africa and the Italian Peninsula during the last glacial maximum. Ecology and Evolution, 9 (24), 13931–13941. https://doi.org/10.1002/ece3.5830
  3. Aukema, B. (1993) Interessante Zeeuwse wantsenvangsten in 1992. Entomologische Berichten, 53 (5), 136.
  4. Aukema, B. (2013) De wantsen van Nationaal Park De Meinweg (Hemiptera: Heteroptera). Natuurhistorisch Maandblad, 102 (10), 278–285.
  5. Aukema, B., Baugnée, J.-Y., Bosmans, R., Bruers, J., Chérot, F., Dethier, M., Viskens, G. & Alderweireldt, M. (2001) Aanvullende gegevens over Belgische miriden (Heteroptera Miridae). Bulletin de la Société royale belge d’Entomologie, 137, 69–90.
  6. Aukema, B., Chérot, F., Viskens, G. & Bruers, J. (2014) Atlas des Miridae de Belgique (Insecta: Heteroptera). Patrimoine de l’Institut royal des Sciences naturelles de Belgique, Bruxelles, 400 pp.
  7. Aukema, B., Hermes, D.J. & Mensink, G. (2020) Wantsen van de nederlandse waddeneilanden vii (Hemiptera: Heteroptera). Nederlandse Faunistische Mededelingen, 54, 21–42.
  8. Aparicio-Puerta, E., Gómez-Martín, C., Giannoukakos, S., Medina, J.M., Scheepbouwer, C., García-Moreno, A. & Hackenberg, M. (2022) sRNAbench and sRNAtoolbox 2022 update: accurate miRNA and sncRNA profiling for model and non-model organisms. Nucleic Acids Research, 50 (W1), W710–W717. https://doi.org/10.1093/nar/gkac363
  9. Bakovic, V., Schebeck, M., Stauffer, C. & Schuler, H. (2020) Wolbachia-mitochondrial DNA associations in transitional populations of Rhagoletis cerasi. Insects, 11 (10), 675. https://doi.org/10.3390/insects11100675
  10. Bargues, M.D., Marcilla, A., Ramsey, J.M., Dujardin, J.P., Schofield, C.J. & Mas-Coma, S. (2000) Nuclear rDNA-based molecular clock of the evolution of Triatominae (Hemiptera: Reduviidae), vectors of Chagas disease. Memórias do Instituto Oswaldo Cruz, 95, 567–573. https://doi.org/10.1590/S0074-02762000000400020
  11. Blair, C. & Bryson Jr, R.W. (2017) Cryptic diversity and discordance in single-locus species delimitation methods within horned lizards (Phrynosomatidae: Phrynosoma). Molecular Ecology Resources, 17 (6), 1168–1182. https://doi.org/10.1111/1755-0998.12658
  12. Bouckaert, R., Heled, J., Kühnert, D., Vaughan, T., Wu, C.H., Xie, D. & Drummond, A.J. (2014) BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Computational Biology, 10 (4), e1003537. https://doi.org/10.1371/journal.pcbi.1003537
  13. Bouckaert, R., Vaughan, T.G., Barido-Sottani, J., Duchêne, S., Fourment, M., Gavryushkina, A. & Drummond, A.J. (2019) BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Computational Biology, 15 (4), e1006650. https://doi.org/10.1371/journal.pcbi.1006650
  14. Braig, H.R., Zhou, W., Dobson, S.L. & O’Neill, S.L. (1998) Cloning and characterization of a gene encoding the major surface protein of the bacterial endosymbiont Wolbachia pipientis. Journal of Bacteriology, 180 (9), 2373–2378. https://doi.org/10.1128/JB.180.9.2373-2378.1998
  15. Calatayud, J., Rodríguez, M.Á., Molina-Venegas, R., Leo, M., Horreo, J.L. & Hortal, J. (2019) Pleistocene climate change and the formation of regional species pools. Proceedings of the Royal Society B, 286 (1905), 20190291. https://doi.org/10.1098/rspb.2019.0291
  16. Cariou, M., Duret, L. & Charlat, S. (2017) The global impact of Wolbachia on mitochondrial diversity and evolution. Journal of Evolutionary Biology, 30 (12), 2204–2210. https://doi.org/10.1111/jeb.13186
  17. Clement, M., Posada, D.C.K.A. & Crandall, K.A. (2000) TCS: a computer program to estimate gene genealogies. Molecular Ecology, 9 (10), 1657–1659. https://doi.org/10.1046/j.1365-294X.2000.01020.x
  18. Cooper, W.R., Swisher, K.D., Garczynski, S.F., Mustafa, T., Munyaneza, J.E. & Horton, D.R. (2015) Wolbachia infection differs among divergent mitochondrial haplotypes of Bactericera cockerelli (Hemiptera: Triozidae). Annals of the Entomological Society of America, 108 (2), 137–145. https://doi.org/10.1093/aesa/sau048
  19. Coulianos, C.C. (2005) Annotated checklist and distribution of the true bugs (Hemiptera-Heteroptera) of Estonia. Proceedings of the Estonian Academy of Sciences, Biology, Ecology, 54 (2), 136–165. https://doi.org/10.3176/biol.ecol.2005.2.04
  20. Darras, H. & Aron, S. (2015) Introgression of mitochondrial DNA among lineages in a hybridogenetic ant. Biology Letters, 11 (2), 20140971. https://doi.org/10.1098/rsbl.2014.0971
  21. Davis, N.T. (1955) Morphology of the female organs of reproduction in the Miridae (Hemiptera). Annals of the Entomological Society of America, 48 (3), 132–150. https://doi.org/10.1093/aesa/48.3.132
  22. Davletshin, S.Z. & Konstantinov, F.V. (2023) Confocal laser scanning microscopy and three-dimensional reconstruction delimit species in a taxonomically challenging group: a revision of the plant bug genus Anapus Stål, 1858 (Heteroptera: Miridae). Insect Systematics & Evolution, 55 (1), 41–92. https://doi.org/10.1163/1876312X-bja10052
  23. DeWaard, J.R., Ratnasingham, S., Zakharov, E.V., Borisenko, A.V., Steinke, D., Telfer, A.C. & Hebert, P.D. (2019) A reference library for Canadian invertebrates with 1.5 million barcodes, voucher specimens, and DNA samples. Scientific Data, 6 (1), 308. https://doi.org/10.1038/s41597-019-0320-2
  24. Díaz, S., Triana-Chávez, O. & Gómez-Palacio, A. (2016) The nuclear elongation factor-1α gene: a promising marker for phylogenetic studies of Triatominae (Hemiptera: Reduviidae). Infection, Genetics and Evolution, 43, 274–280. https://doi.org/10.1016/j.meegid.2016.06.010
  25. Dong, X., Zhang, H., Zhu, X., Wang, K., Xue, H., Ye, Z. & Bu, W. (2023) Mitochondrial introgression and mito-nuclear discordance obscured the closely related species boundaries in Cletus Stål from China (Heteroptera: Coreidae). Molecular Phylogenetics and Evolution, 184, 107802. https://doi.org/10.1016/j.ympev.2023.107802
  26. Douglas, J. & Bouckaert, R. (2022) Quantitatively defining species boundaries with more efficiency and more biological realism. Communications Biology, 5, 755. https://doi.org/10.1038/s42003-022-03723-z
  27. Douglas, J., Jiménez-Silva, C.L. & Bouckaert, R. (2022) StarBeast3: adaptive parallelized Bayesian inference under the multispecies coalescent. Systematic Biology, 71 (4), 901–916. https://doi.org/10.1093/sysbio/syac010
  28. Dzhelali, P.A. & Namyatova, A.A. (2024) Integrative approach for the identification and delimitation of Orthops species (Heteroptera, Miridae, Mirinae) in the Palearctic. Journal of Zoological Systematics and Evolutionary Research, 2024 (1), 5987677. https://doi.org/10.1155/jzs/5987677
  29. Fujisawa, T. & Barraclough, T.G. (2013) Delimiting species using single-locus data and the Generalized Mixed Yule Coalescent approach: a revised method and evaluation on simulated data sets. Systematic Biology, 62 (5), 707–724. https://doi.org/10.1093/sysbio/syt033
  30. Francuski, L., Ludoški, J., Milutinović, A., Krtinić, B. & Milankov, V. (2021) Comparative phylogeography and integrative taxonomy of Ochlerotatus caspius (Diptera: Culicidae) and Ochlerotatus dorsalis. Journal of medical entomology, 58 (1), 222–240. https://doi.org/10.1093/jme/tjaa153
  31. Gagnon, M.C. & Turgeon, J. (2010) Disjunct distributions in Gerris species (Insecta: Hemiptera: Gerridae): an analysis based on spatial and taxonomic patterns of genetic diversity. Journal of Biogeography, 37 (1), 170–178. https://doi.org/10.1111/j.1365-2699.2009.02195.x
  32. Gamerschlag, S., Mehlhorn, H., Heukelbach, J., Feldmeier, H. & D’Haese, J. (2008) Repetitive sequences in the ITS1 region of the ribosomal DNA of Tunga penetrans and other flea species (Insecta, Siphonaptera). Parasitology Research, 102, 193–199. https://doi.org/10.1007/s00436-007-0743-0
  33. García-Vázquez, D., Bilton, D.T., Foster, G.N. & Ribera, I. (2017) Pleistocene range shifts, refugia and the origin of widespread species in western Palaearctic water beetles. Molecular Phylogenetics and Evolution, 114, 122–136. https://doi.org/10.1016/j.ympev.2017.06.007
  34. Gorczyca, J. & Wolski, A. (2011) A catalogue of plant bugs (Heteroptera: Miridae) of Poland. Part. II. Subfamily Mirinae. Catalogus Faunae Poloniae, Warszawa, New Series, 172, 1–172.
  35. Harris, D.J. & Crandall, K.A. (2000) Intragenomic variation within ITS1 and ITS2 of freshwater crayfishes (Decapoda: Cambaridae): implications for phylogenetic and microsatellite studies. Molecular Biology and Evolution, 17 (2), 284–291. https://doi.org/10.1093/oxfordjournals.molbev.a026308
  36. Head, M.J. & Gibbard, P.L. (2005) Early-Middle Pleistocene transitions: an overview and recommendation for the defining boundary. Available from: https://chooser.crossref.org/?doi=10.1144%2FGSL.SP.2005.247.01.01 (accessed 15 July 2024) https://doi.org/10.1144/GSL.SP.2005.247.01.01
  37. Hebert, P.D., Ratnasingham, S., Zakharov, E.V., Telfer, A.C., Levesque-Beaudin, V., Milton, M.A. & DeWaard, J.R. (2016) Counting animal species with DNA barcodes: Canadian insects. Philosophical Transactions of the Royal Society B: Biological Sciences, 371 (1702), 20150333. https://doi.org/10.1098/rstb.2015.0333
  38. Hansen, A.K., Brunke, A.J., Thomsen, P.F., Simonsen, T.J. & Solodovnikov, A. (2023) Formation of the Holarctic fauna: Dated molecular phylogenetic and biogeographic insights from the Quedius-lineage of ground-dwelling rove beetles (Coleoptera, Staphylinidae). Molecular Phylogenetics and Evolution, 182, 107749. https://doi.org/10.1016/j.ympev.2023.107749
  39. Hinomoto, N., Muraji, M., Noda, T., Shimizu, T. & Kawasaki, K. (2004) Identification of five Orius species in Japan by multiplex polymerase chain reaction. Biological Control, 31, 276–279. https://doi.org/10.1016/j.biocontrol.2004.07.002
  40. Ho, S.Y. & Lo, N. (2013) The insect molecular clock. Australian Journal of Entomology, 52 (2), 101–105. https://doi.org/10.1111/aen.12018
  41. Jiang, J., Yu, J., Li, J., Li, P., Fan, Z., Niu, L. & Li, J. (2016) Mitochondrial genome and nuclear markers provide new insight into the evolutionary history of macaques. PLoS One, 11 (5), e0154665. https://doi.org/10.1371/journal.pone.0154665
  42. Jiménez, P.J., Ribes, E., Ribes, J., Rofes, J. & Solà, C. (2003) Dades preliminars sobre els hemípters terrestres de la reserva natural de Sebes i Meandre de Flix i el seu entorn, Ribera d’Ebre (Heteroptera). Actes de la Sessió conjunta d’Entomologia, Institució catalana d’Història natural & Societat catalana de Lepidopterologia, 12, 167–184.
  43. Joshi, M., Espeland, M., Huemer, P., deWaard, J. & Mutanen, M. (2024) Species delimitation under allopatry: genomic insights within and across continents in Lepidoptera. Insect Systematics and Diversity, 8 (5), 7. https://doi.org/10.1093/isd/ixae027
  44. Jung, S. & Lee, S. (2012) Molecular phylogeny of the plant bugs (Heteroptera: Miridae) and the evolution of feeding habits. Cladistics, 28 (1), 50–79. https://doi.org/10.1111/j.1096-0031.2011.00365.x
  45. Kanyukova, E.V. & Kerzhner, I.M. (2010) Additions to the fauna of terrestrial bugs (Heteroptera) of northern and central Sakhalin. Euroasian Entomological Journal, 9 (3), 550–560.
  46. Kelton, L.A. (1955a) Species of Lygus, Liocoris, and their allies in the Prairie Provinces of Canada (Hemiptera: Miridae). The Canadian Entomologist, 87 (12), 531–556. https://doi.org/10.4039/Ent87531-12
  47. Kelton, L.A. (1955b) Genera and Subgenera of the Lygus Complex (Hemiptera: Miridae). The Canadian Entomologist, 87 (7), 277–301. https://doi.org/10.4039/Ent87277-7
  48. Kerzhner, I.M. & Konstantinov, F.V. (1999) Structure of the aedeagus in Miridae (Heteroptera) and its bearing to suprageneric classification. Zoosystematica Rossica, 8 (1), 1–24.
  49. Kerzhner, I.M. (1988) Infraorder Cimicomorpha. 21. Family Miridae (Capsidae). In: Ler, P.A. (Ed.), Opredelitel’nasekomykh Dal’nego Vostoka SSSR [Keys to the identification of insects of the Soviet Far East]. Vol. 2. Homoptera and Heteroptera. Nauka, Leningrad, pp. 778–857.
  50. Kerzhner, I.M. & Jaczewski, T.L. (1964) Order Heteroptera (Hemiptera). Semi-winged. In: Kerzhner, I.M. & Jaczewski, T.L. (Eds.), Key to Insects of the European Part of the USSR. Vol. 1. Nauka, Moscow, pp. 655–845
  51. Kerzhner, I.M. & Josifov, M. (1999) Catalogue of the Heteroptera of the Palaearctic Region. Volume III. Cimicomorpha II. Netherlands Entomological Society, Wageningen, 577 pp.
  52. Kim, J. & Jung, S. (2019) Phylogeny of the plant bug subfamily Mirinae (Hemiptera: Heteroptera: Cimicomorpha: Miridae) based on total evidence analysis. Systematic Entomology, 44 (4), 686–698. https://doi.org/10.1111/syen.12348
  53. Kim, J., Cassis, G. & Jung, S. (2023) Phylogenetic analysis of the predatory plant bug subfamily Deraeocorinae (Hemiptera: Heteroptera: Miridae) based on molecular and morphological data. Zoological Journal of the Linnean Society, 197 (1), 246–266. https://doi.org/10.1093/zoolinnean/zlac061
  54. Kim, H. & Lee, S. (2008) Molecular Systematics of the Genus Megoura (Hemiptera: Aphididae) Using Mitochondrial and Nuclear DNA Sequences. Molecules and Cells, 25 (4), 510–522. https://doi.org/10.1016/S1016-8478(23)17612-6
  55. Kirschner, P., Seifert, B., Kröll, J., STEPPE Consortium, Schlick‐Steiner, B.C. & Steiner, F.M. (2023) Phylogenomic inference and demographic model selection suggest peripatric separation of the cryptic steppe ant species Plagiolepis pyrenaica stat. rev. Molecular Ecology, 32 (5), 1149–1168. https://doi.org/10.1111/mec.16828
  56. Klecková, I., Cesanek, M., Fric, Z. & Pellissier, L. (2015) Diversification of the cold-adapted butterfly genus Oeneis related to Holarctic biogeography and climatic niche shifts. Molecular Phylogenetics and Evolution, 92, 255–265. https://doi.org/10.1016/j.ympev.2015.06.012
  57. Knyshov, A. & Konstantinov, F.V. (2013) A taxonomic revision of the genus Platycranus Fieber, 1870 (Hemiptera: Heteroptera: Miridae: Orthotylinae). Zootaxa, 3637 (3), 201–253. https://doi.org/10.11646/zootaxa.3637.3.1
  58. Kment, P. & Baňař, P. (2012) True bugs (Hemiptera: Heteroptera) of the Bílé Karpaty protected landscape area and biosphere reserve (Czech Republic). Acta Musei Moraviae, Scientiae biologicae, 96 (2), 323–628.
  59. Kohli, M., Djernæs, M., Herrera, M.S., Sahlen, G., Pilgrim, E., Simonsen, T.J. & Ware, J. (2021) Comparative phylogeography uncovers evolutionary past of Holarctic dragonflies. PeerJ, 9, e11338. https://doi.org/10.7717/peerj.11338
  60. Kondorosy, E. (2011) Keszthely és környéke poloskafaunájának alapvetése (Heteroptera). Folia Musei Historico-Naturalis Bakonyiensis, 28, 105–145.
  61. Konstantinov, F.V. (2003) Male genitalia in Miridae (Heteroptera) and their significance for suprageneric classification of the family. Part I: general review, Isometopinae and Psallopinae. Belgian Journal of Entomology, 5, 3–36.
  62. Konstantinov, F.V. (2019) Revision of Agraptocoris Reuter (Heteroptera: Miridae: Phylinae), with description of five new species and a review of aedeagal terminology. Zootaxa, 4668 (1), 1–100. https://doi.org/10.11646/zootaxa.4668.1.1
  63. Konstantinov, F.V. & Hosseini, R. (2024) Review of the genus Salicarus (Hemiptera, Heteroptera, Miridae). ZooKeys, 1211, 57–89. https://doi.org/10.3897/zookeys.1211.129660
  64. Konstantinov, F.V., Neimorovets, V.V. & Korzeev, A.I. (2016) Review of Campylomma from Russia, Caucasus, and Central Asia with description of two new species (Hemiptera: Heteroptera: Miridae: Phylinae). Entomologica Americana, 122 (1–2), 115–155. https://doi.org/10.1664/15-RA-046
  65. Konstantinov, A.S., Korotyaev, B.A. & Volkovitsh, M.G. (2009) Insect biodiversity in the Palearctic Region. In: Foottit, R.G. & Adler, P.H. (Eds.), Insect Biodiversity: Science and Society. Wiley-Blackwell, Hoboken, pp. 107–162. https://doi.org/10.1002/9781444308211.ch7
  66. Linnavuori, R. (1992) Hemiptera of Iraq. I. Heteroptera, Miridae (Deraeocorinae, Dicyphinae, Mirinae, and Orthotylinae). Entomologica Fennica, 3 (4), 223–231. https://doi.org/10.33338/ef.83732
  67. Linnavuori, R.E. (2009) Studies on the Nepomorpha, Gerromorpha, Leptopodomorpha, and Miridae excluding Phylini (Hemiptera: Heteroptera) of Khuzestan and the adjacent provinces of Iran. Acta Entomologica Musei Nationalis Pragae, 49 (1), 1–32.
  68. Lukashuk, A.O. & Saluk, S.V. (2021) New and rare for the Belarusian fauna true bug species (Insecta: Hemiptera: Heteroptera) from the parks of Brest region. Russian Entomological Journal, 30 (1), 16–19. https://doi.org/10.15298/rusentj.30.1.03
  69. Luthi, F. & Dioli, P. (2020) Gli eterotteri negli strati bassi dell’atmosfera in un sobborgo di Bologna. Quaderni di Studi Naturalistici della Romagna, 51, 127–166.
  70. Lee, G.E., Condamine, F.L., Bechteler, J., Pérez-Escobar, O.A., Scheben, A., Schäfer-Verwimp, A. & Heinrichs, J. (2020) An ancient tropical origin, dispersals via land bridges and Miocene diversification explain the subcosmopolitan disjunctions of the liverwort genus Lejeunea. Scientific Reports, 10 (1), 14123. https://doi.org/10.1038/s41598-020-71039-1
  71. Leigh, J.W., Bryant, D. & Nakagawa, S. (2015) POPART: full-feature software for haplotype network construction. Methods in Ecology and Evolution, 6 (9), 1110–1116. https://doi.org/10.1111/2041-210X.12410
  72. Liu, H., Ye, Z., Liang, J., Wang, S. & Bu, W. (2018) Niche divergence of two closely related Carbula species (Insecta: Hemiptera: Pentatomidae) despite the presence of a hybrid zone. Ecological Entomology, 43 (2), 204–214. https://doi.org/10.1111/een.12486
  73. Luo, A., Ling, C., Ho, S.Y.W. & Zhu, C.D. (2018) Comparison of methods for molecular species delimitation across a range of speciation scenarios. Systematic Biology, 67 (5), 830–846. https://doi.org/10.1093/sysbio/syy011
  74. Lukicheva, S. & Mardulyn, P. (2021) Whole-genome sequencing reveals asymmetric introgression between two sister species of cold-resistant leaf beetles. Molecular Ecology, 30 (16), 4077–4089. https://doi.org/10.1111/mec.16011
  75. Machtelinckx, T., Van Leeuwen, T., Vanholme, B., Gehesquière, B., Dermauw, W., Vandekerkhove, B., Gheysen, G. & De Clercq, P. (2009) Wolbachia induces strong cytoplasmic incompatibility in the predatory bug Macrolophus pygmaeus. Insect Molecular Biology, 18 (3), 373–381. https://doi.org/10.1111/j.1365-2583.2009.00877.x
  76. Magnien, C. (2010) Intégrer mesure, métrologie et analyse pour l’étude des graphes de terrain dynamiques. Mémoire d’habilitation à diriger des recherches, Université Pierre et Marie Curie/LIP6, Paris, 150 pp.
  77. Malenovský, I., Baňař, P. & Kment, P. (2011) A contribution to the faunistics of the Hemiptera (Cicadomorpha, Fulgoromorpha, Heteroptera, and Psylloidea) associated with dry grassland sites in southern Moravia (Czech Republic). Acta Musei Moraviae, Scientiae biologicae, 96 (1), 41–187.
  78. Makhov, I.A., Gorodilova, Ye.Yu. & Lukhtanov, V.A. (2021) Sympatric occurrence of deeply diverged mtDNA lineages in Siberian geometrid moths (Lepidoptera, Geometridae): cryptic speciation, mitochondrial introgression, secondary admixture or effect of Wolbachia? Biological Journal of the Linnean Society, 134 (2), 342–365. https://doi.org/10.1093/biolinnean/blab089
  79. Masonick, P. & Weirauch, C. (2020) Integrative Species Delimitation in Nearctic Ambush Bugs (Heteroptera: Reduviidae: Phymatinae): Insights From Molecules, Geometric Morphometrics and Ecological Associations. Systematic Entomology, 45 (1), 205–223. https://doi.org/10.1111/syen.12388
  80. Mastrantonio, V., Porretta, D., Urbanelli, S., Crasta, G. & Nascetti, G. (2016) Dynamics of mtDNA introgression during species range expansion: insights from an experimental longitudinal study. Scientific Reports, 6 (1), 30355. https://doi.org/10.1038/srep30355
  81. Menard, K.L., Schuh, R.T. & Woolley, J.B. (2014) Total-evidence phylogenetic analysis and reclassification of the Phylinae (Insecta: Heteroptera: Miridae), with the recognition of new tribes and subtribes and a redefinition of Phylini. Cladistics, 30 (4), 391–427. https://doi.org/10.1111/cla.12052
  82. Moore, T.E. (1955) A new species of Agnocoris from Illinois, and a synopsis of the genus in North America (Hemiptera, Miridae). Proceedings of the Entomological Society of Washington, 57, 175–180.
  83. Moore, T.E. (1956) Agnocoris rubicunda in North America (Hemiptera, Miridae). Journal of the Kansas Entomological Society, 29, 37–39.
  84. Namyatova, A.A. (2010) Revision of the genus Pachytomella (Heteroptera: Miridae: Orthotylinae: Halticini). Acta Entomologica Musei Nationalis Pragae, 50 (2), 341–400.
  85. Namyatova, A.A. & Dzhelali, P.A. (2024) Morphological and molecular variability within widespread Palearctic species Liocoris tripustulatus Fieber (Hemiptera: Heteroptera: Miridae: Mirinae). Journal of Insect Biodiversity, 57 (2), 32–57. https://doi.org/10.12976/jib/2024.57.2.1
  86. Namyatova, A.A. & Konstantinov, F.V. (2009) Revision of the genus Orthocephalus Fieber, 1858 (Hemiptera: Heteroptera: Miridae: Orthotylinae). Zootaxa, 2316 (1), 1–118. https://doi.org/10.11646/zootaxa.2316.1.1
  87. Namyatova, A.A., Dzhelali, P.A. & Konstantinov, F.V. (2024) Delimitation of the widely distributed Palearctic Stenodema species (Hemiptera, Heteroptera, Miridae): insights from molecular and morphological data. ZooKeys, 1209, 245–270. https://doi.org/10.3897/zookeys.1209.124766
  88. Namyatova, A.A., Schwartz, M.D. & Cassis, G. (2021) Determining the position of Diomocoris, Micromimetus and Taylorilygus in the Lygus-complex based on molecular data and first records of Diomocoris and Micromimetus from Australia, including four new species (Insecta: Hemiptera: Miridae: Mirinae). Invertebrate Systematics, 35 (1), 90–131. https://doi.org/10.1071/IS20015
  89. Namyatova, A.A. & Tyts, V.D. (2025) Total-evidence phylogeny of the subfamily Cylapinae and the divergence dates for its subgroupings (Insecta: Heteroptera: Miridae). Zoological Journal of the Linnean Society, zlae008. https://doi.org/10.1093/zoolinnean/zlae008
  90. Namyatova, A.A., Tyts, V.D. & Bolshakova, D.S. (2023) Identification and delimitation of the trans-Palearctic Lygus species (Insecta: Hemiptera: Miridae) using integrative approach. Insect Systematics & Evolution, 54 (2), 146–192. https://doi.org/10.1163/1876312X-bja10035
  91. Navarro-Escalante, L., Benavides, P. & Acevedo, F.E. (2024) Diversity of bacterial symbionts associated with the tropical plant bug Monalonion velezangeli (Hemiptera: Miridae) revealed by high-throughput 16S-rRNA sequencing. Peer Community Journal, 4, e100. https://doi.org/10.24072/pcjournal.386
  92. Neimorovets, V.V. (2010) True bugs (Heteroptera) of Krasnodar Krai and the Republic of Adygea. Species list. Entomological Review, 90 (3), 1–50.
  93. Oh, M., Kim, S. & Lee, S. (2023) Revisiting the phylogeny of the family Miridae (Heteroptera: Cimicomorpha), with updated insights into its origin and life history evolution. Molecular Phylogenetics and Evolution, 184, 107796. https://doi.org/10.1016/j.ympev.2023.107796
  94. Nylander, J.A.A. (2004) MrModeltest. Version 2.2. Available from: http://www.abc.se/~nylander/ (accessed 19 March 2025)
  95. Pagola-Carte, S. & Zabalegui, I. (2007) Nuevos e interesantes registros de Miridae (Hemiptera: Heteroptera) en el País Vasco. Heteropterus Revista de Entomología, 7 (1), 33–56.
  96. Pagola-Carte, S., Zabalegui, I. & Ribes, J. (2006a) Miridae (Hemiptera: Heteroptera) de los parques naturales de Aralar e Izki (País Vasco, norte de la Península Ibérica). Heteropterus Revista de Entomología, 6, 105–135.
  97. Platania, L., Vodă, R., Dincă, V., Talavera, G., Vila, R. & Dapporto, L. (2020) Integrative analyses on Western Palearctic Lasiommata reveal a mosaic of nascent butterfly species. Journal of Zoological Systematics and Evolutionary Research, 58 (4), 809–822. https://doi.org/10.1111/jzs.12356
  98. Puillandre, N., Lambert, A., Brouillet, S. & Achaz, G.J.M.E. (2012) ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Molecular Ecology, 21 (8), 1864–1877. https://doi.org/10.1111/j.1365-294X.2011.05239.x
  99. Rabitsch, W. (2001) Neue und seltene Wanzen (Insecta, Heteroptera) aus Niederösterreich und Wien. 2. Linzer biologische Beiträge, 33 (2), 1057–1075.
  100. Rabitsch, W. (2018) Snapshot of the terrestrial true bug fauna of the Pocem floodplains (Insecta: Hemiptera: Heteroptera). Acta ZooBot Austria, 155, 251–256.
  101. Rambaut, A., Drummond, A.J., Xie, D., Baele, G. & Suchard, M.A. (2018) Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology, 67 (5), 901–904. https://doi.org/10.1093/sysbio/syy032
  102. Raupach, M.J., Hendrich, L., Küchler, S.M., Deister, F., Morinière, J. & Gossner, M.M. (2014) Building-up of a DNA barcode library for true bugs (Insecta: Hemiptera: Heteroptera) of Germany reveals taxonomic uncertainties and surprises. PLoS One, 9 (9), e106940. https://doi.org/10.1371/journal.pone.0106940
  103. Reid, N.M. & Carstens, B.C. (2012) Phylogenetic estimation error can decrease the accuracy of species delimitation: a Bayesian implementation of the general mixed Yule-coalescent model. BMC Evolutionary Biology, 12, 196. https://doi.org/10.1186/1471-2148-12-196
  104. Ribes, J. (1977) Un mírido nuevo y otro ya conocido del País Valenciano (Insecta, Heteroptera). Mediterránea. Serie de Estudios sobre Biología Terrestre Mediterránea, 2, 29–34. https://doi.org/10.14198/MDTRRA1977.2.03
  105. Ribes, J., Goula, M.G., Pagola-Carte, S., Solé, F.G. & Español, R.E. (2008) Addicions i correccions al catàleg dels heteròpters de Catalunya (Insecta, Hemiptera, Heteroptera). Sessió Conjunta d’Entomologia, 15, 107–165
  106. Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61 (3), 539–542. https://doi.org/10.1093/sysbio/sys029
  107. Roslin, T., Antão, L., Hällfors, M., Meyke, E., Lo, C., Tikhonov, G., Delgado, M. del M., Gurarie, E., Abadonova, M., Abduraimov, O., Adrianova, O., Akimova, T., Akkiev, M., Ananin, A., Andreeva, E., Andriychuk, N., Antipin, M., Arzamascev, K., Babina, S., Babushkin, M., Bakin, O., Barabancova, A., Basilskaja, I., Belova, N., Belyaeva, N., Bespalova, T., Bisikalova, E., Bobretsov, A., Bobrov, V., Bobrovskyi, V., Bochkareva, E., Bogdanov, G., Bolshakov, V., Bondarchuk, S., Bukharova, E., Butunina, A., Buyvolov, Y., Buyvolova, A., Bykov, Y., Chakhireva, E., Chashchina, O., Cherenkova, N., Chistjakov, S., Chuhontseva, S., Davydov, E. A., Demchenko, V., Diadicheva, E., Dobrolyubov, A., Dostoyevskaya, L., Drovnina, S., Drozdova, Z., Dubanaev, A., Dubrovsky, Y., Elsukov, S., Epova, L., Ermakova, O., Ermakova, O. S., Ershkova, E., Esengeldenova, A., Evstigneev, O., Fedchenko, I., Fedotova, V., Filatova, T., Gashev, S., Gavrilov, A., Gaydysh, I., Golovcov, D., Goncharova, N., Gorbunova, E., Gordeeva, T., Grishchenko, V., Gromyko, L., Hohryakov, V., Hritankov, A., Ignatenko, E., Igosheva, S., Ivanova, U., Ivanova, N., Kalinkin, Y., Kaygorodova, E., Kazansky, F., Kiseleva, D., Knorre, A., Kolpashikov, L., Korobov, E., Korolyova, H., Korotkikh, N., Kosenkov, G., Kossenko, S., Kotlugalyamova, E., Kozlovsky, E., Kozsheechkin, V., Kozurak, A., Kozyr, I., Krasnopevtseva, A., Kruglikov, S., Kuberskaya, O., Kudryavtsev, A., Kulebyakina, E., Kulsha, Y., Kupriyanova, M., Kurbanbagamaev, M., Kutenkov, A., Kutenkova, N., Kuyantseva, N., Kuznetsov, A., Larin, E., Lebedev, P., Litvinov, K., Luzhkova, N., Mahmudov, A., Makovkina, L., Mamontov, V., Mayorova, S., Megalinskaja, I., Meydus, A., Minin, A., Mitrofanov, O., Motruk, M., Myslenkov, A., Nasonova, N., Nemtseva, N., Nesterova, I., Nezdoliy, T., Niroda, T., Novikova, T., Panicheva, D., Pavlov, A., Pavlova, K., Podolski, S., Polikarpova, N., Polyanskaya, T., Pospelov, I., Pospelova, E., Prokhorov, I., Prokosheva, I., Puchnina, L., Putrashyk, I., Raiskaya, J., Rozhkov, Y., Rozhkova, O., Rudenko, M., Rybnikova, I., Rykova, S., Sahnevich, M., Samoylov, A., Sanko, V., Sapelnikova, I., Sazonov, S., Selyunina, Z., Shalaeva, K., Shashkov, M., Shcherbakov, A., Shevchyk, V., Shubin, S., Shujskaja, E., Sibgatullin, R., Sikkila, N., Sitnikova, E., Sivkov, A., Skok, N., Skorokhodova, S., Smirnova, E., Sokolova, G., Sopin, V., Spasovski, Y., Stepanov, S., Stratiy, V., Strekalovskaya, V., Sukhov, A., Suleymanova, G., Sultangareeva, L., Teleganova, V., Teplov, V., Teplova, V., Tertitsa, T., Timoshkin, V., Tirski, D., Tolmachev, A., Tomilin, A., Tselishcheva, L., Turgunov, M., Tyukh, Y., Van, P., Van, V., Vasin, A., Vasina, A., Vekliuk, A., Vetchinnikova, L., Vinogradov, V., Volodchenkov, N., Voloshina, I., Xoliqov, T., Yablonovska-Grishchenko, E., Yakovlev, V., Yakovleva, M., Yantser, O., Yarema, Y., Zahvatov, A., Zakharov, V., Zelenetskiy, N., Zheltukhin, A., Zubina, T., Kurhinen, J. & Ovaskainen, O. (2021) Phenological shifts of abiotic events, producers and consumers across a continent. Nature Climate Change, 11 (3), 241–248. https://doi.org/10.1038/s41558-020-00967-7
  108. Roth, S. & Coulianos, C.C. (2014) A survey of aquatic and terrestrial Heteroptera in northern Europe with special regard to Finnmark, Norway (and adjacent regions). Norwegian Journal of Entomology, 61 (1), 99–116.
  109. Rutins, I., Schannauer, S., Orellana, S., Laukhuff, H., Lang, E., Becker, T., McKinney, E., Thomas, K., Tilden, V., Swartz, M. & Blair, J.E. (2022) Genetic Diversity and Wolbachia (Rickettsiales: Anaplasmataceae) Prevalence Within a Remnant Population of Regal Fritillary, Argynnis idalia (Lepidoptera: Nymphalidae), in South-Central Pennsylvania. Journal of Insect Science, 22 (1), 24. https://doi.org/10.1093/jisesa/ieac006
  110. Sofronova, E.V. (2015) On the study of the true bug fauna (Heteroptera) of the northern slope of the Khamar-Daban Range (Eastern Siberia). Bulletin of Tomsk State University. Biology, 30 (2), 45–60.
  111. Saitoh, T. (2021) High variation of mitochondrial DNA diversity as compared to nuclear microsatellites in mammalian populations. Ecological Research, 36 (2), 206–220. https://doi.org/10.1111/1440-1703.12190
  112. San Jose, M., Doorenweerd, C. & Rubinoff, D. (2023) Genomics reveals widespread hybridization across insects with ramifications for species boundaries and invasive species. Current Opinion in Insect Science, 58, 101052. https://doi.org/10.1016/j.cois.2023.101052
  113. Sanchez, J.A. & Cassis, G. (2018) Towards solving the taxonomic impasse of the biocontrol plant bug subgenus Dicyphus (Dicyphus) (Insecta: Hemiptera: Miridae) using molecular, morphometric and morphological partitions. Zoological Journal of the Linnean Society, 184 (2), 330–406. https://doi.org/10.1093/zoolinnean/zly005
  114. Sanmartín, I., Enghoff, H. & Ronquist, F. (2001) Patterns of animal dispersal, vicariance and diversification in the Holarctic. Biological Journal of the Linnean Society, 73 (4), 345–390. https://doi.org/10.1006/bijl.2001.0542
  115. Schär, S., Talavera, G., Espadaler, X., Rana, J.D., Andersen, A., Cover, S.P. & Vila, R. (2018) Do Holarctic ant species exist? Trans-Beringian dispersal and homoplasy in the Formicidae. Journal of Biogeography, 45 (8), 1917–1928. https://doi.org/10.1111/jbi.13380
  116. Scudder, G.G.E. (1997) True bugs (Heteroptera) of the Yukon. In: Danks, H.V. & Downes, J.A. (Eds.), Insects of the Yukon. Biological Survey of Canada (Terrestrial Arthropods), Ottawa, pp. 241–336
  117. Schuh, R.T. (1995) Plant Bugs of the World (Insecta: Heteroptera: Miridae). Systematic Catalog, Distributions, Host List and Bibliography. New York Entomological Society, New York, New York, 1329 pp.
  118. Schuh, R.T. (2002–2013) On-line systematic catalog of plant bugs (Insecta: Heteroptera: Miridae). Available from: http://research.amnh.org/pbi/catalog/ (accessed 1 June 2024)
  119. Schuh, R.T. & Weirauch, C. (2020) True Bugs of the World (Hemiptera: Heteroptera): Classification and Natural History. 2nd Edition. Siri Scientific Press, Manchester, 767 pp.
  120. Serra, A., Roca-Cusachs, M., Basas Satorras, H. & Goula, M. (2022) Exemplars tipus d’Heteròpters de la collecció Jordi Ribes (Hemiptera, Heteroptera) dipositada al Centre de Recursos de Biodiversitat Animal. Butlletí de la Institució Catalana d’Història Natural, 86, 123–145.
  121. Slater, J. (1950) An investigation of the female genitalia as taxonomic characters in the Miridae (Hemiptera). Annals of the Entomological Society of America, 43 (3), 211–230.
  122. Stamatakis, A. (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30 (9), 1312–1313. https://doi.org/10.1093/bioinformatics/btu033
  123. Sucháčková Bartoňová, A., Konvička, M., Marešová, J., Wiemers, M., Ignatev, N., Wahlberg, N., Schmitt, T. & Faltýnek Fric, Z. (2021) Wolbachia affects mitochondrial population structure in two systems of closely related Palaearctic blue butterflies. Scientific Reports, 11, 3019. https://doi.org/10.1038/s41598-021-82433-8
  124. Shamsi, M. (2014) Checklist of the subfamilies Mirinae and Orthotylinae (Hemiptera: Heteroptera: Miridae) in western parts of Kerman province, Iran. Arthropods, 3 (1), 48–55.
  125. Sikes, D.S., Bowser, M., Morton, J.M., Bickford, C., Meierotto, S. & Hildebrandt, K. (2017) Building a DNA barcode library of Alaska’s non-marine arthropods. Genome, 60 (3), 248–259. https://doi.org/10.1139/gen-2015-0203
  126. Tamura, K., Stecher, G. & Kumar, S. (2021) MEGA11: molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 38 (7), 3022–3027. https://doi.org/10.1093/molbev/msab120
  127. Templeton, A.R., Routman, E. & Phillips, C.A. (1995) Separating population structure from population history: a cladistic analysis of the geographical distribution of mitochondrial DNA haplotypes in the tiger salamander, Ambystoma tigrinum. Genetics, 140 (2), 767–782. https://doi.org/10.1093/genetics/140.2.767
  128. Toews, D.P. & Brelsford, A. (2012) The biogeography of mitochondrial and nuclear discordance in animals. Molecular Ecology, 21 (16), 3907–3930. https://doi.org/10.1111/j.1365-294X.2012.05664.x
  129. Vila, R., Bell, C.D., Macniven, R., Goldman-Huertas, B., Ree, R.H., Marshall, C.R., Bálint, Z., Johnson, K., Benyamini, D. & Pierce, N.E. (2011) Phylogeny and palaeoecology of Polyommatus blue butterflies show Beringia was a climate-regulated gateway to the New World. Proceedings of the Royal Society B: Biological Sciences, 278 (1719), 2737–2744. https://doi.org/10.1098/rspb.2010.2213
  130. Vinokurov, N.N. (1979) Heteroptera of Yakutia. Nauka, Leningrad, 232 pp.
  131. Vinokurov, N.N., Gapon, D.A., Golub, V.B., Zinovyeva, A.N., Kanyukova, E.V. & Konstantinov, F.V. (2024) Katalog poluzhestkokrylykh nasekomykh (Heteroptera) evropeyskoy chasti Rossii i Urala [Catalogue of the Heteroptera of the European part of Russia and Ural]. Zoological Institute of the Russian Academy of Sciences, St Petersburg, 792 pp. [in Russian]
  132. Vinokurov, N.N., Burnasheva, A.P. & Nogovitsyna, S.N. (2022) Heteroptera of the “Alakit” resource reserve in the Republic of Sakha (Yakutia), Russia. Euroasian Entomological Journal, 21 (1), 24–34. https://doi.org/10.15298/euroasentj.21.1.04
  133. Vinokurov, N.N. & Kanyukova, E.V. (1995) Heteroptera of Siberia. Nauka, Novosibirsk, 310 pp.
  134. Vinokurov, N.N., Kanyukova, E.V. & Golub, V.B. (2010) Catalogue of Heteroptera of the Asian part of Russia. Nauka, Novosibirsk, 450 pp.
  135. Vinokurov, N.N. & Rudoi, V.V. (2022) On the fauna of terrestrial bugs (Heteroptera: Cimicomorpha, Pentatomomorpha) of Altai Krai (Russia). II. Acta Biologica Sibirica, 8, 381–398. https://doi.org/10.5281/zenodo.7187722
  136. Vishnevskaya, M.S., Saifitdinova, A.F. & Lukhtanov, V.A. (2016) Karyosystematics and molecular taxonomy of the anomalous blue butterflies (Lepidoptera, Lycaenidae) from the Balkan Peninsula. Comparative Cytogenetics, 10 (5), 1–85. https://doi.org/10.3897/CompCytogen.v10i5.10944
  137. Wagner, E. & Weber, H.H. (1964) Heteropteres Miridae. In: Faune de France. Vol. 67. Fédération Française des Sociétés de Sciences Naturelles, Paris, pp. 1–589.
  138. Wahlberg, N., Peña, C., Ahola, M., Wheat, C.W. & Rota, J. (2016) PCR primers for 30 novel gene regions in the nuclear genomes of Lepidoptera. ZooKeys, 596, 129–141. https://doi.org/10.3897/zookeys.596.8399
  139. Wahlberg, N. & Saccheri, I. (2007) The effects of Pleistocene glaciations on the phylogeography of Melitaea cinxia (Lepidoptera: Nymphalidae). European Journal of Entomology, 104 (4), 675–684. https://doi.org/10.14411/eje.2007.085
  140. Wang, J., Zhang, L.I., Zhang, Q.L., Zhou, M.Q., Wang, X.T., Yang, X.Z. & Yuan, M.L. (2017) Comparative mitogenomic analysis of mirid bugs (Hemiptera: Miridae) and evaluation of potential DNA barcoding markers. PeerJ, 5, e3661. https://doi.org/10.7717/peerj.3661
  141. Wang, X.-C., Liu, C., Huang, L., Bengtsson-Palme, J., Chen, H., Zhang, J.-H., Cai, D. & Li, J.-Q. (2015) ITS 1: a DNA barcode better than ITS 2 in eukaryotes? Molecular Ecology Resources, 15 (3), 573–586. https://doi.org/10.1111/1755-0998.12325
  142. Werren, J.H. & Windsor, D.M. (2000) Wolbachia infection frequencies in insects: evidence of a global equilibrium? Proceedings of the Royal Society of London. Series B: Biological Sciences, 267 (1450), 1277–1285. https://doi.org/10.1098/rspb.2000.1139
  143. Wheeler, A.G. Jr. & Henry, T.J. (1992) A Synthesis of the Holarctic Miridae (Heteroptera): Distribution, Biology, and Origin, with Emphasis on North America. Thomas Say Foundation. Vol. 15. Entomological Society of America, Lanham, Maryland, 282 pp.
  144. Wolski, A. & Skora, H. (2012) New Polish data from Agnocoris reclairei (Wagner, 1949) and A. rubicundus (Fallén, 1807) (Hemiptera: Heteroptera: Miridae) with a key to the Palearctic species of Agnocoris Reuter. Heteroptera Poloniae-Acta Faunistica, 4, 5–12.
  145. Xun, H., Li, H., Li, S., Wei, S., Zhang, L., Song, F., Jiang, P., Yang, H., Han, F. & Cai, W. (2016) Population genetic structure and post-LGM expansion of the plant bug Nesidiocoris tenuis (Hemiptera: Miridae) in China. Scientific Reports, 6, 26755. https://doi.org/10.1038/srep26755
  146. Yamamoto, S., Beljaev, E.A. & Sota, T. (2016) Phylogenetic analysis of the winter geometrid genus Inurois reveals repeated reproductive season shifts. Molecular Phylogenetics and Evolution, 94, 47–54. https://doi.org/10.1016/j.ympev.2015.08.016
  147. Yasunaga, T. (2023) Descriptions of twenty-three new mirine species from Japan, with a key to genera of the tribe Mirini, updating the Japanese fauna (Hemiptera: Miridae: Mirinae). Tijdschrift voor Entomologie, 166 (1), 1–116. https://doi.org/10.1163/22119434-bja10024
  148. Yasunaga, T., Schwartz, M.D. & Chérot, F. (2023) Revision of the plant bug genus Diognetus, with descriptions of thirteen new species from the Oriental and Eastern Palearctic Regions (Hemiptera: Heteroptera: Miridae). Acta Entomologica Musei Nationalis Pragae, 63 (1), 1–55. https://doi.org/10.37520/aemnp.2023.001
  149. Zamani, M. & Hosseini, R. (2020) An illustrated taxonomic key to genera of Mirinae (Hemiptera: Heteroptera: Miridae) with three new records from Iran. Russian Entomological Journal, 29 (1), 20–32. https://doi.org/10.15298/rusentj.29.1.04
  150. Zhang, J., Kapli, P., Pavlidis, P. & Stamatakis, A. (2013) A general species delimitation method with applications to phylogenetic placements. Bioinformatics, 29 (22), 2869–2876. https://doi.org/10.1093/bioinformatics/btt499
  151. Zhang, L., Li, H., Li, S., Zhang, A., Kou, F., Xun, H., Wang, P., Wang, Y., Song, F., Cui, J., Cui, J., Gouge, D.H. & Cai, W. (2015) Phylogeographic structure of cotton pest Adelphocoris suturalis (Hemiptera: Miridae): strong subdivision in China inferred from mtDNA and rDNA ITS markers. Scientific Reports, 5 (1), 14009. https://doi.org/10.1038/srep14009
  152. Zhang, L.-J., Cai, W.-Z., Luo, J.-Y., Zhang, S., Wang, C.-Y., Lv, L.-M., Xiangzhen, Z., Wang, L. & Cui, J.-J. (2017) Phylogeographic patterns of Lygus pratensis (Hemiptera: Miridae): Evidence for weak genetic structure and recent expansion in northwest China. PLoS ONE, 12 (4), e0174712. https://doi.org/10.1371/journal.pone.0174712
  153. Zhang, H., Ning, X., Yu, X. & Bu, W.-J. (2021) Integrative Species Delimitation Based on COI, ITS, and Morphological Evidence Illustrates a Unique Evolutionary History of the Genus Paracercion (Odonata: Coenagrionidae). PeerJ, 9, e11459. https://doi.org/10.7717/peerj.11459
  154. Zhou, W., Rousset, F. & O’Neill, S. (1998) Phylogeny and PCR-based classification of Wolbachia strains using wsp gene sequences. Proceedings of the Royal Society of London. Series B: Biological Sciences, 265 (1395), 509–515. https://doi.org/10.1098/rspb.1998.0324

How to Cite

Dzhelali, P.A. & Namyatova, A.A. (2025) Integrative taxonomy reveals mitochondrial introgression and Pleistocene diversification in Palearctic Agnocoris species (Insecta: Heteroptera: Miridae). Zootaxa, 5706 (4), 501–529. https://doi.org/10.11646/zootaxa.5706.4.3