Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2025-11-26
Page range: 301-334
Abstract views: 31
PDF downloaded: 13

Morphometric and molecular analyses support the species status of Amegilla teneriffensis (Cockerell, 1930) and A. maderae (Sichel, 1868) (Anthophila: Apidae: Anthophorinae)

Department of Biology/Chemistry; Ecology Section; University of Osnabrück; Barbarastr. 13; 49069 Osnabrück; Germany
General Zoology; Institute for Biology; Martin Luther University Halle-Wittenberg; Hoher Weg 8; 06120 Halle (Saale); Germany
Entomology Lab; Laboratório de Qualidade Agrícola—LQA; Secretaria Regional de Agricultura e Pescas; Caminho Municipal dos Caboucos; 61; 9135-372 Camacha; Madeira; Portugal
Staatliches Museum für Naturkunde Karlsruhe; Erbprinzenstraße 13; 76133 Karlsruhe; Germany
Hymenoptera taxonomy biogeography island endemism body size hair colour variation

Abstract

Amegilla quadrifasciata (Villers, l789) has been recorded as a widespread bee species across the Mediterranean basin, including the Madeira Archipelago and the Canary Islands. Until now, these island populations have been differentiated from mainland populations as two subspecies: Amegilla quadrifasciata maderae (Sichel, 1868) and A. quadrifasciata teneriffensis (Cockerell, 1930), respectively. We now show, using DNA sequences and multivariate morphometric and morphological analyses, that these former subspecies most likely represent two distinct species: A. maderae (Sichel, 1868) status resurrected and Amegilla teneriffensis (Cockerell, 1930) stat. nov., upgraded to species rank and sister species to A. quadrifasciata. Mainland populations of A. quadrifasciata across its range are genetically and morphometrically largely homogeneous and differentiated from A. maderae and A. teneriffensis. In comparison to A. quadrifasciata, A. maderae and A. teneriffensis have larger body size in females, but not in males, whilst A. maderae females exhibit dark polymorphic hair colour forms.

 

References

  1. Alfken, J.D. (1940) Die Arthropodenfauna von Madeira nach den Ergebnissen der Reise von Prof. Dr. O. Lundblad Juli–August 1935. XXV. Hymenoptera: Prosopis, Andrena, Anthophora, Megachile und Osmia. Arkiv för zoologi, Uppsala, 32 (4), 1–2.
  2. Báez, M. & Ortega, G. (1978) Lista preliminar de los Himenópteros de las Islas Canarias. Boletín de la Asociación Española de Entomologia, 2, 185–199.
  3. Baur, H. (2025) Morphometric Methods for Species Recognition. In: Heraty, J. & Woolley, J. (Eds.), Chalcidoidea of the World. CABI, Wallingford, Oxfordshire, pp. 789–795. https://doi.org/10.1079/9781800623545.0069
  4. Baur, H. & Leuenberger, C. (2011) Analysis of ratios in multivariate morphometry. Systematic Biology, 60, 813–825. https://doi.org/10.1093/sysbio/syr061
  5. Baur, H., Kranz-Baltensperger, Y., Cruaud, A., Rasplius, J.-Y., Timokhov, A.V. & Gokhan, V.E. (2014) Morphometric analysis and taxonomic revision of Anisopteromalus Ruschka (Hymenoptera: Chalcidoidea: Pteromalidae)—An integrative approach. Systematic Entomology, 39, 691–709. https://doi.org/10.1111/syen.12081
  6. Baur, H. & Leuenberger, C. (2020) Multivariate Ratio Analysis (MRA): R-scripts and tutorials for calculating Shape PCA, Ratio Spectra and LDA Ratio Extractor. Available from: https://zenodo.org/records/4250142 (accessed 14 October 2025) https://doi.org/10.5281/zenodo.4250142
  7. Bickford, D., Lohman, D.J., Sodhi, N.S., Ng, P.K., Meier, R., Winker, K., Ingram, K.K. & Das, I. (2007) Cryptic species as a window on diversity and conservation. Trends in Ecology and Evolution, 22 (3), 148–155. https://doi.org/10.1016/j.tree.2006.11.004
  8. Bischoff, H. (1937) Hymenoptera aculeata (excl. Formicidae und Halictinae) von den Kanarischen Inseln. Societas Scientiarum Fennica Commentationes Biologicae, 6 (10), 1–3.
  9. Boltnev, A. & Kacher, O. (2017) FOTO Stacker Version 1.6 (29). FOTO Stacker, LLC, Mason, Ohio. [program]
  10. Boni, C.B., Coppola, F., Quaranta, M., Giannini, F. & Felicioli, A. (2023) Bombus terrestris terrestris (Linnaeus, 1758) and hybrids with the endemic Bombus xanthopus spotted on Capraia Island (Tuscan Archipelago, Italy): some conservation management implications. The Science of Nature, 110 (3), 14. https://doi.org/10.1007/s00114-023-01843-y
  11. Borowiec, M.L., Zhang, Y.M., Neves, K., Ramalho, M.O., Fisher, B.L., Lucky, A. & Moreau, C.S. (2025) Evaluating UCE data adequacy and integrating uncertainty in a comprehensive phylogeny of ants. Systematic Biology, syaf001. https://doi.org/10.1093/sysbio/syaf001
  12. Brooks, W. (1988) Systematics and phylogeny of the anthophorine bees (Hymenoptera: Anthophoridae; Anthophorini). University of Kansas Science Bulletin, 53 (9), 436–575.
  13. Carolan, J.C., Murray, T.E., Fitzpatrick, U., Crossley, J., Schmidt, H., Cederberg, B., McNally, L., Paxton, R.J., Williams, P.H. & Brown, M.J. (2012) Colour patterns do not diagnose species: quantitative evaluation of a DNA barcoded cryptic bumblebee complex. PLoS One, 7 (1), e29251. https://doi.org/10.1371/journal.pone.0029251
  14. Carracedo, J.C. (2011) Geología de Canarias I. (Origen, evolución, edad y volcanismo). Editorial Rueda, Madrid, 398 pp.
  15. Cheng, Y., Dehant, V., Rivoldini, A., Rekier, J. & Bizouard, C. (2025) Basic Earth Parameters from VLBI observations using Bayesian inversions in the time domain: updated insights of the Earth‘s interior. EGUsphere, 2025, 1–18. https://doi.org/10.5194/egusphere-2025-4428
  16. Cockerell, T.D.A. (1930) Descriptions and records of bees CXXVI. Annals and magazine of natural history, zoology, botany and geology, 10 (3), 273–282. https://doi.org/10.1080/00222933108673310
  17. Coppée, A. (2010) Bombus terrestris (L. 1758) A complex species or a species complex. Intraspecific pheromonal and genetic variations of Bombus terrestris (L.), Impacts on the speciation. Laboratoire de Zoologie, Université de Mons, Mons, 177 pp.
  18. Dours, J.M.A. (1869) Monographie iconographique du genre Anthophora Lat. Imp. Lenoel-Herouart, Amiens, 210 pp., 2 pls. https://doi.org/10.5962/bhl.title.9337
  19. Drummond, A.J., Suchard, M.A., Xie, D. & Rambaut, A. (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution, 29, 1969–1973. https://doi.org/10.1093/molbev/mss075
  20. Dusmet y Alonso, J.M. (1924) Algunos himenópteros de Canarias. Boletín de la Sociedad Española de Historia Natural, 24, 455–458.
  21. EazyDraw (2020) Vector drawing software. Version 9.8.1. Dekorra Optics LLC, Sauk City, Wisconsin. [program]
  22. Falk, S. (2015) Field Guide to the Bees of Great Britain and Ireland. British Wildlife Publishing, Plymouth, 432 pp.
  23. Fišer, C., Robinson, C.T. & Malard, F. (2018) Cryptic species as a window into the paradigm shift of the species concept. Molecular Ecology, 27 (3), 613–635. https://doi.org/10.1111/mec.14486
  24. Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrigenhoek, R. (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3, 294–299.
  25. Friese, H. (1897) Die Bienen Europa’s (Apidae europaeae) nach ihren Gattungen, Arten und Varietäten auf vergleichend morphologisch-biologischer Grundlage. Theil III. Solitære Apiden. Genus Podalirius. Friedländer & Sohn, Berlin 316 pp.
  26. Galopim de Carvalho, A.M. & Bandão, J.M. (1991) Geologia do Arquipélago da Madeira. Museu Nacional de História Natural (Mineralogia e Geologia) da Universidade de Lisboa, Lisbon, 170 pp.
  27. Geldmacher, J., van der Bogaard, P. & Schminke, H.-U. (2000) The 40 Ar/39 Ar age dating of the Madeira Archipelago and hotspot track (Eastern North Atlantic). Geochemistry, Geophysics, Geosystems, 1 (2), 1999GC000018. https://doi.org/10.1029/1999GC000018
  28. Gómez, A., Serra, M., Carvalho, G.R. & Lunt, D.H. (2002) Speciation in ancient cryptic species complexes: evidence from the molecular phylogeny of Brachionus plicatilis (Rotifera). Evolution, 56 (7), 1431–1444. https://doi.org/10.1111/j.0014-3820.2002.tb01455.x
  29. Gribodo, G. (1883) Le crociere dell Yacht ‘Corsaro’ del capitano Armatore Enrico d’Albertis. IV. Imenotteri. Annali del Museo civico di Storia Naturale di Genova, 18, 684–690.
  30. Gu, X., Zheng, Y., Li, H. & Guo, J. (2022) A case of integrative taxonomy based on traditional morphology, molecular systematics and geometric morphometrics in the taxonomy of Torrenticolidae (Acari, Hydrachnidiae). Systematic and Applied Acarology, 27 (5), 905–921. https://doi.org/10.11158/saa.27.5.6
  31. Hending, D. (2025) Cryptic species conservation: a review. Biological Reviews, 100 (1), 258–274. https://doi.org/10.1111/brv.13139
  32. Hohmann, H., La Roche, F., Ortega, G. & Barquin, J. (1993) Bienen, Wespen und Ameisen der Kanarischen Inseln (Insecta: Hymenoptera: Aculeata). Veröffentlichungen aus dem Übersee-Museum Bremen, Naturwissenschaften, 12 (1), 14–465, (col.) pls. I–XII; 12 (2), 493–712.
  33. Huber, J.T. (1998) The importance of voucher specimens, with practical guidelines for preserving specimens of the major invertebrate phyla for identification. Journal of Natural History, 32 (3), 367–385. https://doi.org/10.1080/00222939800770191
  34. Jörger, K.M. & Schrödl, M. (2013) How to describe a cryptic species? Practical challenges of molecular taxonomy. Frontiers in Zoology, 10 (1), 1–27. https://doi.org/10.1186/1742-9994-10-59
  35. Kasparek, M., Tunca, R.I. & Özgül, O. (2024) Can Bergmann’s rule and the thermal melanism hypothesis explain the variation in colour and size observed in the wild bee Eoanthidium insulare (Apoidea: Megachilidae) across its Palaearctic range? Journal of Asia-Pacific Entomology, 27 (1), 102174. https://doi.org/10.1016/j.aspen.2023.102174
  36. Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P. & Drummond, A. (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28, 1647–1649. https://doi.org/10.1093/bioinformatics/bts199
  37. Kier, G., Kreft, H., Lee, T.m., Jetz, W., Ibisch, P.l., Nowicki, C., Mutke, J. & Barthlott, W. (2009) A global assessment of endemism and species richness across Island and mainland regions. Proceedings of the National Academy of Sciences, 106 (23), 9322–9327. https://doi.org/10.1073/pnas.0810306106
  38. Kratochwil, A. (2020) Revision of the Andrena wollastoni group (Hymenoptera, Anthophila, Andrenidae) from the Madeira Archipelago and the Canary Islands: upgrading of three former subspecies and a description of three new subspecies. Linzer biologische Beiträge, 52 (1), 161–244.
  39. Kratochwil, A. (2021a) Taxonomic re-evaluation of Andrena cyanomicans Pérez, 1895, A. fratella Warncke, 1968, A. maderensis Cockerell, 1922, A. mirna Warncke, 1969, A. notata Warncke, 1968, and A. portosanctana Cockerell, 1922 (Hymenoptera, Anthophila, Suandrena). Linzer biologische Beiträge, 53 (2), 631–698.
  40. Kratochwil, A. (2021b) First record of a gynandromorph of Osmia submicans Morawitz, 1870 (Hymenoptera, Megachilidae) – characterisation by morphological and morphometric parameters and critical note on gynander classification. Linzer biologische Beiträge, 53 (1), 3–31.
  41. Kratochwil, A. (2025a) Neotype designation (female) of Amegilla (Amegilla) quadrifasciata (Villers, 1789) (Anthophila, Anthophoridae) – historical background, morphometric validation, description of the male. Linzer biologische Beiträge, 57 (1), 193–225.
  42. Kratochwil, A. (2025b) Redescription of Andrena savignyi Spinola, 1838 (Hymenoptera, Anthophila, Andrenidae). Linzer biologische Beiträge, 56 (2), 487–526.
  43. Kratochwil, A. & Schwabe, A. (2018a) Wild bees (Anthophila) of Porto Santo (Madeira Archipelago) and their habitats: species diversity, distribution patterns and bee-plant network. Linzer biologische Beiträge, 50 (2), 1219–1247.
  44. Kratochwil, A. & Schwabe, A. (2018b) Wild bees (Anthophila) of Macaronesia – biogeographical and evolutionary aspects. Berichte der Reinhold-Tüxen-Gesellschaft, 30, 149–162.
  45. Kratochwil, A., Schwabe, A. & Scheuchl, E. (2014) Andrena (Suandrena) portosanctana Cockerell, 1922 and A. (Suandrena) maderensis Cockerell, 1922—new taxonomical and ecological data for two closely related endemic bee species of the Madeira Archipelago, Portugal. Linzer biologische Beiträge, 46 (2), 1535–1567.
  46. Kratochwil, A., Smit, J. & Aguiar, A. (2018) Updated checklist of the wild bees of the Madeira Archipelago (Hymenoptera: Apoidea: Anthophila). Linzer biologische Beiträge, 50 (2), 1213–1228.
  47. Kratochwil, A., Schwabe, A., Paxton, R., Aguiar, A. & Husemann, M. (2021) Morphological and genetic data suggest a complex pattern of inter-island colonisation and differentiation for wild bees (Hymenoptera: Anthophila: Andrena) on the Macaronesian Islands. Organisms Diversity & Evolution, 22 (1), 189–204. https://doi.org/10.1007/s13127-021-00513-z
  48. Kratochwil, A., Schwabe, A., Aguiar, A.M.F. & Smit, J. (2022) Intra-island distribution of the wild-bee species of Madeira Island, habitat preferences and flower-visiting behaviour (Hymenoptera, Apoidea, Anthophila). Boletim do Museu de História Natural do Funchal, 22, 55–113.
  49. Krüger, E. (1928) Über die Farbenvariationen der Hummelart Bombus agrorum Fabr. Zeitschrift für Morphologie und Ökologie der Tiere, 11 (3/4), 361–494. https://doi.org/10.1007/BF02433459
  50. Krüger, E. (1931) Über die Farbenvariationen der Hummelart Bombus agrorum Fabr. 11. Teil. Zeitschrift für Morphologie und Ökologie der Tiere, 24 (1), 148–237. https://doi.org/10.1007/BF00491804
  51. Krüger, E. (1940) Über die Farbenvariationen der Hummelart Bombus variabilis. Zeitschrift für Morphologie und Ökologie der Tiere, 37 (2), 276–386. https://doi.org/10.1007/BF00408262
  52. Lecocq, T., Brasero, N., De Meulemeester, T., Michez, D., Dellicour, S., Lhomme, P., De Jonghe, R., Valterová, I., Urbanová, K. & Rasmont, P. (2015) An integrative taxonomic approach to assess the status of Corsican bumblebees: implications for conservation. Animal Conservation, 18 (3), 236–248. https://doi.org/10.1111/acv.12164
  53. Leigh, J.W. & Bryant, D. (2015) PopART: Full-feature software for haplotype network construction. Methods in Ecology and Evolution, 6 (9), 1110–1116. https://doi.org/10.1111/2041-210X.12410
  54. Lieftinck, M.A. (1958) A preliminary account of the Bees of Canary Islands (Hym. Apoidea). Societas Scientiarum Fennica Commentationes Biologicae, 18 (5), 1–34.
  55. Losos, J.B. & Ricklefs, R.E. (2009) Adaptation and diversification on islands. Nature, 457, 830–836. https://doi.org/10.1038/nature07893
  56. Marconi, M., Modesti, A., Alvarez, L.P., Ogoña, P.V., Mendoza, A.C., Vecco-Giove, C.D., Luna, J.O., Di Giulio, A. & Mancini, E. (2022) DNA Barcoding of stingless bees (Hymenoptera: Meliponini) in Northern Peruvian forests: A plea for integrative taxonomy. Diversity, 14 (8), 632. https://doi.org/10.3390/d14080632
  57. Menéndez, I., Derbyshire, E., Engelbrecht, J., von Suchodoletz, H., Zöller, L., Dortha, P., Carrillo, T., & Rodríguez de Castro, F. (2009) Saharan dust and the aerosolson the Canary Islands: past and present. In: Cheng, M. & Liu, W. (Eds.), Airborne particulates. Nova Science Publishers, New York, New York, pp. 39–80.
  58. Michener, C.D. (2007) The Bees of the World (2nd ed.). Johns Hopkins University Press, Baltimore, 953 pp.
  59. Milankov, V., Ståhls, G., Stamenković, J. & Vujić, A. (2008) Genetic diversity of populations of Merodon aureus and M. cinereus species complexes (Diptera, Syrphidae): integrative taxonomy and implications for conservation priorities on the Balkan Peninsula. Conservation Genetics, 9 (5), 1125–1137. https://doi.org/10.1007/s10592-007-9426-8
  60. Nguembock, B., Fjeldså, J., Couloux, A. & Pasquet, E. (2008) Phylogeny of Laniarius: molecular data reveal L. liberatus synonymous with L. erlangeri and “plumage coloration” as unreliable morphological characters for defining species and species groups. Molecular Phylogenetics and Evolution, 48 (2), 396–407. https://doi.org/10.1016/j.ympev.2008.04.014
  61. Nylander, J.A.A. (2004) MrModeltest. Version 2. Program distributed by the author, Uppsala University, Uppsala. [program]
  62. Orr, M.C., Hung, K.L.J., Wilson-Rankin, E.E., Simpson, P.M., Yanega, D., Kim, A.Y. & Ascher, J.S. (2023) Scientific note: first mainland records of an unusual island bee (Anthophora urbana clementina) highlight the value of community science for adventive species detection and monitoring. Apidologie, 54 (5), 46. https://doi.org/10.1007/s13592-023-01025-9
  63. Orr, M.C., Chesters, D., Williams, P.H., Wood, T.J., Zhou, Q., Bossert, S., Sless, T., Warrit, N., Rasmont, P., Ghisbain, G., Boustani, M., A’rong, L., Feng, Y., Niu, Z-Q. & Zhu, C-D. (2024) Integrative taxonomy of a new species of a bumble bee-mimicking brood parasitic bee, Tetralonioidella mimetica (Hymenoptera, Apoidea, Apidae), investigated through phylogenomics. Journal of Hymenoptera Research, 97, 755–780. https://doi.org/10.3897/jhr.97.129470
  64. Paxton, R.J., Thorén, P.A., Tengö, J., Estoup, A. & Pamilo, P. (1996) Mating structure and nestmate relatedness in a communal bee, Andrena jacobi (Hymenoptera: Andrenidae), using microsatellites. Molecular Ecology, 5, 511–519. https://doi.org/10.1111/j.1365-294X.1996.tb00343.x
  65. Poulsen, N.R. & Rasmussen, C. (2020) Island bees: do wood nesting bees have better island dispersal abilities? Apidologie, 51 (6), 1006–1017. https://doi.org/10.1007/s13592-020-00778-x
  66. R Core Team (2025) R: A language and environment for statistical computing. R Foundation for statistical computing, Vienna, Austria. Available from: https://www.r-project.org/ (accessed 14 October 2025)
  67. Rambaut, A. (2009) FigTree. Version 1.4.0. 2006–2012. Available from: http://tree.bio.ed.ac.uk/software/figtree/ (accessed 14 October 2025)
  68. Rapti, Z., Duennes, M.A. & Cameron, S.A. (2014) Defining the colour pattern phenotype in bumble bees (Bombus): a new model for evo devo. Biological Journal of the Linnean Society, 113 (2), 384–404. https://doi.org/10.1111/bij.12356
  69. Rasch, D., Kubinger, K.D. & Moder, K. (2011) The two-sample t test: pre-testing its assumptions does not pay off. Statistical papers, 52, 219–231. https://doi.org/10.1007/s00362-009-0224-x
  70. Rasmont, P., Scholl, A., De Jonghe, R., Obrecht, E. & Adamski, A. (1986) Identité et variabilité des mâles de bourdons du genre Bombus Latreille sensu stricto en Europe occidentale et centrale (Hymenoptera, Apidae, Bombinae). Revue suisse de Zoologie, 93 (3), 661–682. https://doi.org/10.5962/bhl.part.79505
  71. Rasmont, P., Coppée, A., Michez, D. & De Meulemeester, T. (2008) An overview of the Bombus terrestris (L. 1758) subspecies (Hymenoptera: Apidae). Annales de la Société entomologique de France, 44 (2), 243–250. https://doi.org/10.1080/00379271.2008.10697559
  72. Rasmont, P., Ghisbain, G. & Terzo, M. (2021) Bumblebees of Europe and neighbouring regions. NAP Editions, Verrières-le-Buisson, 628 pp.
  73. Reinig, W.F. (1937) Melanismus, Albinismus und Rufinismus: ein Beitrag zum Problem der Entstehung und Bedeutung tierischer Färbungen. Georg Thieme Verlag, Leipzig, 122 pp.
  74. Rodríguez, S. & López-Darias, J. (2024) Extreme Saharan dust events expand northward over the Atlantic and Europe, prompting record-breaking PM10 and PM2.5 episodes. Atmospheric Chemistry and Physics, 24 (20), 12031–12053. https://doi.org/10.5194/acp-24-12031-2024
  75. Ruiz, C., Cejas, D., Muñoz, I. & De la Rua, P. (2021) Characterizing the mitogenome of the endemic bumblebee subspecies from the Canary Islands for conservation purposes. Sociobiology, 68 (3), e5910. https://doi.org/10.13102/sociobiology.v68i3.5910
  76. Scheuchl, E. & Widmer, W. (2016) Taschenlexikon der Wildbienen Mitteleuropas: Alle Arten im Porträt. Quelle & Meyer Verlag, Wiebelsheim, 920 pp.
  77. Schmidt, S., Schmid-Egger, C., Morinére, J., Haszprunar, G. & Hebert, P.D.N. (2015) DNA barcoding largely supports 250 years of classical taxonomy: Identifications for Central European bees (Hymenoptera, Apoidea partim). Molecular Ecology Resources, 15, 985–1000. https://doi.org/10.1111/1755-0998.12363
  78. Schmincke, H.U. (1998) Zeitliche, strukturelle und vulkanische Entwicklung der Kanarischen Inseln, der Selvagens-Inseln und des Madeira-Archipels. In: Bischoff, W. (Ed.), Die Reptilien der Kanarischen Inseln, der Selvagens-Inseln und des Madeira-Archipels. Aula, Wiesbaden, pp. 27–69.
  79. Sichel, F.J. (1868) Hymenoptera mellifera. In: Die Reise der österreichischen Fregatte Novara um die Erde in den Jahren 1857, 1858, 1859 unter den Befehlen des Commodore B. von Wüllerstorf-Urbair. Zoologischer Theil, 2. Band, l. Abtheilung, A., Hymenoptera (bearb. v. H. de Salissure). k.-k. Hof- u. Staatsdruckerei, Wien, pp. 143–156.
  80. Villers, C.D. (1789) Caroli Linnaei Entomologia, Faunae Suecicae Descriptionibus Aucta. D.D. Scopoli, Geoffroy, De Geer, Fabricii, Schrank etc. speciebus vel in Systemate non enumeratis, vel nuperrime detectis, vel speciebus Galliae Australis locupletata, generum specierumque rariorum iconibus ornate 3. Curante et augente Carolo de Villers, Acad. Lugd. Massil. Villa-Fr. Rhotom. Necnon Geometriae Regio Professore. Sumptibus Piestre et Delamolliere, Lugduni, 657 pp.
  81. Vogt, O. (1909) Studien über das Artproblem. Mitteilung 1: Über das Variieren der Hummeln. Sitzungsbericht der Gesellschaft Naturforschender Freunde zu Berlin, 1909 (1), 28–84.
  82. Vogt, O. (1911) Studien über das Artproblem. Mitteilung 2: Über das Variieren der Hummeln. 2. Teil (Schluss). Sitzungsbericht der Gesellschaft Naturforschender Freunde zu Berlin, 1911 (1), 31–74.
  83. Weihrauch, F. (2011) A review of the distribution of Odonata in the Macaronesian Islands, with particular reference to the Ischnura puzzle. Journal of the British Dragonfly Society, 27 (1), 28–46.
  84. Whittaker, R.J. & Fernández-Palacios, J.M. (2007) Island biogeography: ecology, evolution, and conservation. 2nd Edition. Oxford University Press, Oxford, 416 pp.
  85. Widmer, A., Schmid-Hempel, P., Estoup, A. & Scholl, A. (1998) Population genetic structure and colonization history of Bombus terrestris s.l. (Hymenoptera: Apidae) from the Canary Islands and Madeira. Heredity, 81, 563–572. https://doi.org/10.1046/j.1365-2540.1998.00407.x
  86. Williams, P.H. (2021) Not just cryptic, but a barcode bush: PTP re-analysis of global data for the bumblebee subgenus Bombus s. str. supports additional species (Apidae, genus Bombus). Journal of Natural History, 55 (5–6), 271–282. https://doi.org/10.1080/00222933.2021.1900444
  87. Wolf, H. (1980) Zur Kenntnis der Aculeaten-Fauna von Gran Canaria und Teneriffa. Vieraea, 9 (1–2), 65–78.
  88. Wood, T. & Praz, C.J. (2024) Discovery of Anthophora onosmarum Morawitz, 1876 in Europe (Hymenoptera, Apidae). Alpine Entomology, 8, 153–160. https://doi.org/10.3897/alpento.8.138225
  89. Yeates, D.K., Seago, A., Nelson, L., Cameron, S.L., Joseph, L.E.O. & Trueman, J.W. (2011) Integrative taxonomy, or iterative taxonomy? Systematic Entomology, 36 (2), 209–217. https://doi.org/10.1111/j.1365-3113.2010.00558.x

How to Cite

Kratochwil, A., Paxton, R.J., Aguiar, A.F. & Husemann, M. (2025) Morphometric and molecular analyses support the species status of Amegilla teneriffensis (Cockerell, 1930) and A. maderae (Sichel, 1868) (Anthophila: Apidae: Anthophorinae). Zootaxa, 5723 (3), 301–334. https://doi.org/10.11646/zootaxa.5723.3.1