Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2023-12-11
Page range: 225-241
Abstract views: 433
PDF downloaded: 207

Māwhitiwhiti Aotearoa: Phylogeny and synonymy of the silent alpine grasshopper radiation of New Zealand (Orthoptera: Acrididae)

Wildlife & Ecology Group; SNS; Massey University; Palmerston North; New Zealand
Wildlife & Ecology Group; SNS; Massey University; Palmerston North; New Zealand; The New Zealand Institute for Plant and Food Research Ltd; Palmerston North; New Zealand
Wildlife & Ecology Group; SNS; Massey University; Palmerston North; New Zealand
Orthoptera phylogenetics grasshopper Acrididae Alpinacris Brachaspis Paprides Sigaus mitogenomics

Abstract

Aotearoa New Zealand has a fauna of endemic alpine grasshoppers, consisting of thirteen species distributed among four genera. The many re-classifications of species within this group and the presence of species complexes highlight the uncertainty that surrounds relationships within and between these genera. High-throughput Next Generation Sequencing was used to assemble the complete mitochondrial genomes, 45S ribosomal cassettes and histone sequences of New Zealand’s four endemic alpine genera: Alpinacris, Brachaspis, Paprides and Sigaus. Phylogenetic analysis of these molecular datasets, as individual genes, partitions and combinations returned a consistent topology that is incompatible with the current classification. The genera Sigaus, Alpinacris, and Paprides all exhibit paraphyly. A consideration of the pronotum, epiphallus and terminalia of adult specimens reveals species-specific differences, but fails to provide compelling evidence for species groups justifying distinct genera. In combination with phylogenetic, morphological and spatial evidence we propose a simplified taxonomy consisting of a single genus for the māwhitiwhiti Aotearoa species radiation.

 

References

  1. Álvarez, I. & Wendel, J.F. (2003) Ribosomal ITS sequences and plant phylogenetic inference. Molecular phylogenetics and evolution, 29 (3), 417–434. https://doi.org/10.1016/S1055-7903(03)00208-2
  2. Bernt, M., Donath, A., Jühling, F., Externbrink, F., Florentz, C., Fritzsch, G., Pütz, J., Middendorf, M. & Stadler, P.F. (2013) MITOS: improved de novo metazoan mitochondrial genome annotation. Molecular Phylogenetics and Evolution, 69 (2), 313–319. https://doi.org/10.1016/j.ympev.2012.08.023
  3. Bigelow, R.S. (1967) The grasshoppers (Acrididae) of New Zealand; their taxonomy and distribution. University of Canterbury Publications, Christchurch, 109 + (43) pp.
  4. Boudinet, B.E., Borowiec, M.L. & Prebus, M.M. (2022) Phylogeny, evolution, and classification of the ant genus Lasius, the tribe Lasiini and the subfamily Formicinae (Hymenoptera: Formicidae). Systematic Entomology, 47, 113–151. https://doi.org/10.1111/syen.12522
  5. Brunner von Wattenwyl, K.B. & Fea, L. (1893) n.k. In: Révision du système des orthoptères et description des espèces rapportées par M. Leonardo Fea de Birmanie. Vol. 33. Tipografia dei R. Istituto sordo-muti, Genova, pp. 6–230. https://doi.org/10.5962/bhl.title.5121
  6. Carmelet-Rescan, D., Morgan-Richards, M., Koot, E.M. & Trewick, S.A. (2021) Climate and ice in the last glacial maximum explain patterns of isolation by distance inferred for alpine grasshoppers. Insect Conservation and Diversity, 14, 568–581. https://doi.org/10.1002/ece3.9633
  7. Chernomor, O., von Haeseler, A. & Minh B.Q. (2016) Terrace aware data structure for phylogenomic inference from supermatrices. Systematic Biology, 65, 997–1008. https://doi.org/10.1093/sysbio/syw037
  8. Cigliano, M.M., Braun, H., Eades, D.C. & Otte. D. (2022) Family Acrididae MacLeay, 1821.Orthoptera Species File. Version 5.0/5.0. Available from: http://Orthoptera.SpeciesFile.org (accessed 1 November 2023)
  9. Dirsh, V.M. (1956a) Orthoptera Acridoidea. In: Hanstrom, B., Brinck, P. & Rudebeck, G. (Eds.), South African Animal Life: Results of the Lund University Expedition in 1950–1951. Vol. 3. Almqvist & Wiksell, Stockholm, pp. 121–272.
  10. Dirsh, V.M. (1956b) Preliminary revision of the genus Catantops Schaum and review of the group Catantopini (Orthoptera, Acrididae). Companhia de Diamantes de Angola, Serviços Culturais Dundo-Lunda-Angola, Dundo, 151 pp.
  11. Dowle, E.J., Morgan-Richards, M. & Trewick, S.A. (2014) Morphological differentiation despite gene flow in an endangered grasshopper. BMC Evolutionary Biology, 14 (1), 216. https://doi.org/10.1186/s12862-014-0216-x
  12. Fenn, J.D., Song, H., Cameron, S.L. & Whiting, M.F. (2008) A preliminary mitochondrial genome phylogeny of Orthoptera (Insecta) and approaches to maximizing phylogenetic signal found within mitochondrial genome data. Molecular Phylogenetics and Evolution, 49 (1), 59–68. https://doi.org/10.1016/j.ympev.2008.07.004
  13. Forni, G., Cussigh, A., Brock,. PD., Jones, B.R., Nicolini, F., Martelossi, J., Luchetti, A. & Mantovani, B. (2023) Taxonomic revision of the Australian stick insect genus Candovia (Phasmida: Necrosciinae): insight from molecular systematics and species-delimitation approaches. Zoological Journal of the Linnean Society, 197, 189–210. https://doi.org/10.1093/zoolinnean/zlac074
  14. Greenfield, M. (1997) Acoustic Communication in Orthoptera. In: Gangwere, S.K., Muralirangan, M.C. & Muralirangan M. (Eds.), The bionomics of grasshoppers, katydids, and their kin. CAB International, Delémont, pp. 197–230.
  15. Hernández, C., Aristeu da Rosa, J., Vallejo, G.A., Guhl, F. & Ramírez, J.D. (2020) Taxonomy, evolution, and biogeography of the Rhodniini Tribe (Hemiptera: Reduviidae). Diversity, 12, 97. https://doi.org/10.3390/d12030097
  16. Hoang, D.T., Chernomor, O., von Haeseler, A, Minh, B.Q. & Vinh, L.S. (2018) UFBoot2: Improving the ultrafast bootstrap approximation. Molecular Biology and Evolution, 35, 518–522. https://doi.org/10.1093/molbev/msx281
  17. Hochkirch, A. (2001) A Phylogenetic Analysis of the East African grasshopper genus Afrophlaeoba JAGO, 1983 (Orthoptera: Acridoidea: Acridinae). Dissertation zur Erlangung des Doktorgrades, Universität Bremen, Bremen, 192 pp.
  18. Hudson, L. (1970) Identification of the immature stages of New Zealand alpine acridid grasshoppers (Orthoptera). Transactions of the Royal Society of New Zealand: Biological Sciences, 12 (17), 185–208.
  19. Hutton, F.W. (1897) The grasshoppers and locusts of New Zealand and the Kermadec Islands. Proceedings and Transaction of the New Zealand Institute, 30, 135–150.
  20. Hutton, F.W. (1898) Notes on the New Zealand Acrididae. Proceedings and Transaction of the New Zealand Institute, 31, 44–50.
  21. Jamieson, C.D. (1999) A new species of Sigaus from Alexandra, New Zealand (Orthoptera: Acrididae). New Zealand Journal of Zoology, 26 (1), 43–48. https://doi.org/10.1080/03014223.1999.9518176
  22. Johnston, H.B. (1956) Annotated catalogue of African grasshoppers. Vol. Part 1. Cambridge University Press, New York, 833 pp.
  23. Johnston, H.B. (1968) Annotated catalogue of African grasshoppers. Supplement. Vol. 2. Cambridge University Press, New York, New York, 447 pp.
  24. Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K.F, von Haeseler, A. & Jermiin, L.S. (2017) ModelFinder: Fast model selection for accurate phylogenetic estimates. Nature Methods, 14, 587–589. https://doi.org/10.1038/nmeth.4285
  25. Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Mentjies, P. & Drummond, A. (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28 (12), 1647–1649. https://doi.org/10.1093/bioinformatics/bts199
  26. Key, K.H.L. (1991) On four endemic genera of Tasmanian Acrididae (Orthoptera). Invertebrate Systematics, 5 (2), 241–288. https://doi.org/10.1071/IT9910241
  27. Key, K.H.L. & Colless, D.H. (1993) A higher classification of the Australian Acridoidea (Orthoptera). II.* Subfamily Catantopinae. Invertebrate Systematics, 7 (1), 89–111. https://doi.org/10.1071/IT9930089
  28. Kishino, H., Miyata, T. & Hasegawa, M. (1990) Maximum likelihood inference of protein phylogeny and the origin of chloroplasts. Journal of Molecular Evolution, 31, 151–160. https://doi.org/10.1007/BF02109483
  29. Kishion, H. & Hasegawa, M. (1989) Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in hominoidea. Journal of Molecular Evolution, 29, 170–179. https://doi.org/10.1007/BF02100115
  30. Koot, E.M., Morgan-Richards, M. & Trewick, S.A. (2020) An alpine grasshopper radiation older than the mountains, on Kā Tiritiri o te Moana (Southern Alps) of Aotearoa (New Zealand). Molecular Phylogenetics and Evolution, 147, 106783. https://doi.org/10.1016/j.ympev.2020.106783
  31. Koot, E.M., Morgan-Richards, M. & Trewick, S.A. (2022) Climate change and alpine-adapted insects: modelling environmental envelopes of a grasshopper radiation. Open Science, 9, 211596. https://doi.org/10.1098/rsos.211596
  32. Linnaeus, C.N. (1758) Systema naturae per regna tria naturae :secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. 10th Edition. Impensis Direct. Laurentii Salvii, Holmiae, 824 pp. https://doi.org/10.5962/bhl.title.542
  33. MacLeay, W.S. (1821) Horae entomologicae: or essays on the annulose animals. Vol. 1. Pt. 1–2. Printed for S. Bagster, London, 162 pp. [1819–1821]
  34. Mariño-Pérez, R. & Song, H. (2017) Phylogeny of the grasshopper family Pyrgomorphidae (Caelifera, Orthoptera) based on morphology. Systematic Entomology, 43 (1), 90–108. https://doi.org/10.1111/syen.12251
  35. Martin, M. (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal, 17 (1), 10–12. https://doi.org/10.14806/ej.17.1.200
  36. Meza-Joya, F.L., Morgan-Richards, M. & Trewick, S.A. (2022) Relationships among body size components of three flightless New Zealand grasshopper species (Orthoptera, Acrididae) and their ecological applications. Journal of Orthoptera Research, 21, 91–103. https://doi.org/10.3897/jor.31.79819
  37. Meza-Joya, F.L., Morgan-Richards, M., Koot, E.M. & Trewick, S.A. (2023) Global warming leads to habitat loss and genetic erosion of alpine biodiversity. Journal of Biogeography, 50 (5), 961–975. https://doi.org/10.1111/jbi.14590
  38. Minh, B.Q., Schmidt, H.A., Chernomor, O., Schrempf, D., Woodhams, M.D., von Haeseler, A. & Lanfear, R. (2020) IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution, 37, 1530–1534. https://doi.org/10.1093/molbev/msaa015
  39. Morgan-Richards, M., Vilcot, M. & Trewick, S.A. (2021) Lack of assortative mating might explain reduced phenotypic differentiation where two grasshopper species meet. Journal of Evolutionary Biology, 35 (4), 509–519. https://doi.org/10.1111/jeb.13879
  40. Morris, S.J. (2003) Two new species of Sigaus from Fiordland, New Zealand (Orthoptera: Acrididae). New Zealand Entomologist, 26 (1), 65–74. https://doi.org/10.1080/00779962.2003.9722110
  41. Nakano, M., Morgan-Richards, M., Clavijo-McCormick, A. & Trewick, S.A. (2022) Abundance and distribution of antennal sensilla on males and females of three sympatric species of alpine grasshopper (Orthoptera: Acrididae: Catantopinae) in Aotearoa New Zealand. Zoomorphology, 142, 51–62. https://doi.org/10.1007/s00435-022-00579-z
  42. Nei, M. & Rooney, A.P. (2005) Concerted and birth-and-death evolution of multigene families. Annual Review of Genetics, 39, 121–152. https://doi.org/10.1146/annurev.genet.39.073003.112240
  43. Pitkin, L.M. (1976) A comparative study of the stridulatory files of the British Gomphocerinae (Orthoptera: Acrididae). Journal of Natural History, 19, 17–28. https://doi.org/10.1080/00222937600770031
  44. Raué, H.A., Klootwijk, J. & Musters, W. (1988) Evolutionary conservation of structure and function of high molecular weight ribosomal RNA. Progress in Biophysics and Molecular Biology, 51 (2), 77–129. https://doi.org/10.1016/0079-6107(88)90011-9
  45. Richard, G.F., Kerrest, A. & Dujon, B. (2008) Comparative genomics and molecular dynamics of DNA repeats in eukaryotes. Microbiology and Molecular Biology Reviews, 72 (4), 686–727. https://doi.org/10.1128/MMBR.00011-08
  46. Ronquist, F. & Huelsenbeck, J.P. (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19 (12), 1572–1574. https://doi.org/10.1093/bioinformatics/btg180
  47. Salmon, J.T. (1950) A new species of Acrididae (Insecta: Orthoptera) from New Zealand. Transactions of the Royal Society of New Zealand: Biological Sciences, 78 (1), 69.
  48. Schori, J.C., Steeves, T.E. & Murray, T.J. (2020) Designing monitoring protocols to measure population trends of threatened insects: A case study of the cryptic, flightless grasshopper Brachaspis robustus. PLoS ONE, 15 (9), e0238636. https://doi.org/10.1371/journal.pone.0238636
  49. Sivyer, L., Morgan-Richards, M., Koot, E. & Trewick, S.A. (2018) Anthropogenic cause of range shifts and gene flow between two grasshopper species revealed by environmental modelling, geometric morphometrics and population genetics. Insect Conservation and Diversity, 11, 425–434. https://doi.org/10.1111/icad.12289
  50. Song, H. (2010) Grasshopper systematics: past, present and future. Journal of Orthopteran Research, 19 (1), 57–68. https://doi.org/10.1665/034.019.0112
  51. Song, H., Amédégnato, C., Cigliano, M.M., Desutter-Grandcolas, L., Heads, S.W., Huang, Y. Otte, D. & Whiting, M.F. (2015) 300 million years of diversification: elucidating the patterns of orthopteran evolution based on comprehensive taxon and gene sampling. Cladistics, 31 (6), 621–651. https://doi.org/10.1111/cla.12116
  52. Song, H., Mariño-Pérez, R., Woller, D.A. & Cigliano, M.M. 2018. Evolution, diversification, and biogeography of grasshoppers (Orthoptera: Acrididae). Insect Systematics and Diversity, 2 (4), 3. https://doi.org/10.1093/isd/ixy008
  53. Stebbins, G.L. (1956) Taxonomy and the evolution of genera, with special reference to the family Gramineae. Evolution, 10, 235–245. https://doi.org/10.2307/2406009
  54. Strimmer, K. & Rambaut, A. (2002) Inferring confidence sets of possibly misspecified gene trees. Proceedings of the Royal Society B, 269, 137–142. https://doi.org/10.1098/rspb.2001.1862
  55. Shimodaira, H. (2002) An Approximately unbiased test of phylogenetic tree selection Systematic Biology, 51, 492–508. https://doi.org/10.1080/10635150290069913
  56. Shimodaira, H. & Hasegawa, M. (1999) Multiple Comparisons of Log-Likelihoods with Applications to Phylogenetic Inference. Molecular Biology and Evolution, 16, 1114. https://doi.org/10.1093/oxfordjournals.molbev.a026201
  57. Sunnucks, P. & Hales, D.F. (1996) Numerous transposed sequences of mitochondrial cytochrome oxidase I-II in aphids of the genus Sitobion (Hemiptera: Aphididae). Molecular Biology and Evolution, 13 (3), 510­­–524. https://doi.org/10.1093/oxfordjournals.molbev.a025612
  58. Trewick, S.A. (2001) Identity of an endangered grasshopper (Acrididae: Brachaspis): taxonomy, molecules and conservation. Conservation Genetics, 2 (3), 233–243. https://doi.org/10.1023/A:1012263717279
  59. Trewick, S.A. (2008) DNA Barcoding is not enough: mismatch of taxonomy and genealogy in New Zealand grasshoppers (Orthoptera: Acrididae). Cladistics, 24 (2), 240–254. https://doi.org/10.1111/j.1096-0031.2007.00174.x
  60. Trewick, S.A. & Morris, S.J. (2008) Diversity and taxonomic status of some New Zealand grasshoppers. Department of Conservation, Wellington, 40 pp.
  61. Trewick, S.A., Hegg, D., Morgan-Richards, M., Murray, T., Watts, C., Johns, P. & Michel, P. (2022) Conservation status of Orthoptera (wētā, crickets and grasshoppers) in Aotearoa New Zealand. New Zealand Threat Classification Series 39. Department of Conservation, Wellington, 28 pp
  62. Trifinopoulos, J., Nguyen, L.-T., von Haeseler, A. & Minh, B.Q. (2016) W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis, Nucleic Acids Research, 44 (1), W232–W235. https://doi.org/10.1093/nar/gkw256
  63. Vaux, F., Hills, S.F., Marshall, B.A., Trewick, S.A. & Morgan-Richards, M. (2017) A phylogeny of Southern Hemisphere whelks (Gastropoda: Buccinulidae) and concordance with the fossil record. Molecular Phylogenetics and Evolution, 114, 367–381. https://doi.org/10.1016/j.ympev.2017.06.018
  64. Wilkerson, R.C., Linton, Y-M., Fonseca, D.M., Schultz, T.R., Price, D.C. & Strickman, D.A. (2015) Making mosquito taxonomy useful: a stable classification of tribe Aedini that balances utility with current knowledge of evolutionary relationships. PlosONE, 10 (7), e0133602. https://doi.org/10.1371/journal.pone.0133602
  65. Zahid, S., Mariño-Pérez, R. & Song, H. (2021) Molecular phylogeny of the grasshopper family Pyrgomorphidae (Caelifera, Orthoptera) reveals rampant paraphyly and convergence of traditionally used taxonomic characters. Zootaxa, 4969 (1), 101–118. https://doi.org/10.11646/zootaxa.4969.1.5