Abstract
Aotearoa New Zealand has a fauna of endemic alpine grasshoppers, consisting of thirteen species distributed among four genera. The many re-classifications of species within this group and the presence of species complexes highlight the uncertainty that surrounds relationships within and between these genera. High-throughput Next Generation Sequencing was used to assemble the complete mitochondrial genomes, 45S ribosomal cassettes and histone sequences of New Zealand’s four endemic alpine genera: Alpinacris, Brachaspis, Paprides and Sigaus. Phylogenetic analysis of these molecular datasets, as individual genes, partitions and combinations returned a consistent topology that is incompatible with the current classification. The genera Sigaus, Alpinacris, and Paprides all exhibit paraphyly. A consideration of the pronotum, epiphallus and terminalia of adult specimens reveals species-specific differences, but fails to provide compelling evidence for species groups justifying distinct genera. In combination with phylogenetic, morphological and spatial evidence we propose a simplified taxonomy consisting of a single genus for the māwhitiwhiti Aotearoa species radiation.
References
- Álvarez, I. & Wendel, J.F. (2003) Ribosomal ITS sequences and plant phylogenetic inference. Molecular phylogenetics and evolution, 29 (3), 417–434. https://doi.org/10.1016/S1055-7903(03)00208-2
- Bernt, M., Donath, A., Jühling, F., Externbrink, F., Florentz, C., Fritzsch, G., Pütz, J., Middendorf, M. & Stadler, P.F. (2013) MITOS: improved de novo metazoan mitochondrial genome annotation. Molecular Phylogenetics and Evolution, 69 (2), 313–319. https://doi.org/10.1016/j.ympev.2012.08.023
- Bigelow, R.S. (1967) The grasshoppers (Acrididae) of New Zealand; their taxonomy and distribution. University of Canterbury Publications, Christchurch, 109 + (43) pp.
- Boudinet, B.E., Borowiec, M.L. & Prebus, M.M. (2022) Phylogeny, evolution, and classification of the ant genus Lasius, the tribe Lasiini and the subfamily Formicinae (Hymenoptera: Formicidae). Systematic Entomology, 47, 113–151. https://doi.org/10.1111/syen.12522
- Brunner von Wattenwyl, K.B. & Fea, L. (1893) n.k. In: Révision du système des orthoptères et description des espèces rapportées par M. Leonardo Fea de Birmanie. Vol. 33. Tipografia dei R. Istituto sordo-muti, Genova, pp. 6–230. https://doi.org/10.5962/bhl.title.5121
- Carmelet-Rescan, D., Morgan-Richards, M., Koot, E.M. & Trewick, S.A. (2021) Climate and ice in the last glacial maximum explain patterns of isolation by distance inferred for alpine grasshoppers. Insect Conservation and Diversity, 14, 568–581. https://doi.org/10.1002/ece3.9633
- Chernomor, O., von Haeseler, A. & Minh B.Q. (2016) Terrace aware data structure for phylogenomic inference from supermatrices. Systematic Biology, 65, 997–1008. https://doi.org/10.1093/sysbio/syw037
- Cigliano, M.M., Braun, H., Eades, D.C. & Otte. D. (2022) Family Acrididae MacLeay, 1821.Orthoptera Species File. Version 5.0/5.0. Available from: http://Orthoptera.SpeciesFile.org (accessed 1 November 2023)
- Dirsh, V.M. (1956a) Orthoptera Acridoidea. In: Hanstrom, B., Brinck, P. & Rudebeck, G. (Eds.), South African Animal Life: Results of the Lund University Expedition in 1950–1951. Vol. 3. Almqvist & Wiksell, Stockholm, pp. 121–272.
- Dirsh, V.M. (1956b) Preliminary revision of the genus Catantops Schaum and review of the group Catantopini (Orthoptera, Acrididae). Companhia de Diamantes de Angola, Serviços Culturais Dundo-Lunda-Angola, Dundo, 151 pp.
- Dowle, E.J., Morgan-Richards, M. & Trewick, S.A. (2014) Morphological differentiation despite gene flow in an endangered grasshopper. BMC Evolutionary Biology, 14 (1), 216. https://doi.org/10.1186/s12862-014-0216-x
- Fenn, J.D., Song, H., Cameron, S.L. & Whiting, M.F. (2008) A preliminary mitochondrial genome phylogeny of Orthoptera (Insecta) and approaches to maximizing phylogenetic signal found within mitochondrial genome data. Molecular Phylogenetics and Evolution, 49 (1), 59–68. https://doi.org/10.1016/j.ympev.2008.07.004
- Forni, G., Cussigh, A., Brock,. PD., Jones, B.R., Nicolini, F., Martelossi, J., Luchetti, A. & Mantovani, B. (2023) Taxonomic revision of the Australian stick insect genus Candovia (Phasmida: Necrosciinae): insight from molecular systematics and species-delimitation approaches. Zoological Journal of the Linnean Society, 197, 189–210. https://doi.org/10.1093/zoolinnean/zlac074
- Greenfield, M. (1997) Acoustic Communication in Orthoptera. In: Gangwere, S.K., Muralirangan, M.C. & Muralirangan M. (Eds.), The bionomics of grasshoppers, katydids, and their kin. CAB International, Delémont, pp. 197–230.
- Hernández, C., Aristeu da Rosa, J., Vallejo, G.A., Guhl, F. & Ramírez, J.D. (2020) Taxonomy, evolution, and biogeography of the Rhodniini Tribe (Hemiptera: Reduviidae). Diversity, 12, 97. https://doi.org/10.3390/d12030097
- Hoang, D.T., Chernomor, O., von Haeseler, A, Minh, B.Q. & Vinh, L.S. (2018) UFBoot2: Improving the ultrafast bootstrap approximation. Molecular Biology and Evolution, 35, 518–522. https://doi.org/10.1093/molbev/msx281
- Hochkirch, A. (2001) A Phylogenetic Analysis of the East African grasshopper genus Afrophlaeoba JAGO, 1983 (Orthoptera: Acridoidea: Acridinae). Dissertation zur Erlangung des Doktorgrades, Universität Bremen, Bremen, 192 pp.
- Hudson, L. (1970) Identification of the immature stages of New Zealand alpine acridid grasshoppers (Orthoptera). Transactions of the Royal Society of New Zealand: Biological Sciences, 12 (17), 185–208.
- Hutton, F.W. (1897) The grasshoppers and locusts of New Zealand and the Kermadec Islands. Proceedings and Transaction of the New Zealand Institute, 30, 135–150.
- Hutton, F.W. (1898) Notes on the New Zealand Acrididae. Proceedings and Transaction of the New Zealand Institute, 31, 44–50.
- Jamieson, C.D. (1999) A new species of Sigaus from Alexandra, New Zealand (Orthoptera: Acrididae). New Zealand Journal of Zoology, 26 (1), 43–48. https://doi.org/10.1080/03014223.1999.9518176
- Johnston, H.B. (1956) Annotated catalogue of African grasshoppers. Vol. Part 1. Cambridge University Press, New York, 833 pp.
- Johnston, H.B. (1968) Annotated catalogue of African grasshoppers. Supplement. Vol. 2. Cambridge University Press, New York, New York, 447 pp.
- Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K.F, von Haeseler, A. & Jermiin, L.S. (2017) ModelFinder: Fast model selection for accurate phylogenetic estimates. Nature Methods, 14, 587–589. https://doi.org/10.1038/nmeth.4285
- Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Mentjies, P. & Drummond, A. (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28 (12), 1647–1649. https://doi.org/10.1093/bioinformatics/bts199
- Key, K.H.L. (1991) On four endemic genera of Tasmanian Acrididae (Orthoptera). Invertebrate Systematics, 5 (2), 241–288. https://doi.org/10.1071/IT9910241
- Key, K.H.L. & Colless, D.H. (1993) A higher classification of the Australian Acridoidea (Orthoptera). II.* Subfamily Catantopinae. Invertebrate Systematics, 7 (1), 89–111. https://doi.org/10.1071/IT9930089
- Kishino, H., Miyata, T. & Hasegawa, M. (1990) Maximum likelihood inference of protein phylogeny and the origin of chloroplasts. Journal of Molecular Evolution, 31, 151–160. https://doi.org/10.1007/BF02109483
- Kishion, H. & Hasegawa, M. (1989) Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in hominoidea. Journal of Molecular Evolution, 29, 170–179. https://doi.org/10.1007/BF02100115
- Koot, E.M., Morgan-Richards, M. & Trewick, S.A. (2020) An alpine grasshopper radiation older than the mountains, on Kā Tiritiri o te Moana (Southern Alps) of Aotearoa (New Zealand). Molecular Phylogenetics and Evolution, 147, 106783. https://doi.org/10.1016/j.ympev.2020.106783
- Koot, E.M., Morgan-Richards, M. & Trewick, S.A. (2022) Climate change and alpine-adapted insects: modelling environmental envelopes of a grasshopper radiation. Open Science, 9, 211596. https://doi.org/10.1098/rsos.211596
- Linnaeus, C.N. (1758) Systema naturae per regna tria naturae :secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. 10th Edition. Impensis Direct. Laurentii Salvii, Holmiae, 824 pp. https://doi.org/10.5962/bhl.title.542
- MacLeay, W.S. (1821) Horae entomologicae: or essays on the annulose animals. Vol. 1. Pt. 1–2. Printed for S. Bagster, London, 162 pp. [1819–1821]
- Mariño-Pérez, R. & Song, H. (2017) Phylogeny of the grasshopper family Pyrgomorphidae (Caelifera, Orthoptera) based on morphology. Systematic Entomology, 43 (1), 90–108. https://doi.org/10.1111/syen.12251
- Martin, M. (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal, 17 (1), 10–12. https://doi.org/10.14806/ej.17.1.200
- Meza-Joya, F.L., Morgan-Richards, M. & Trewick, S.A. (2022) Relationships among body size components of three flightless New Zealand grasshopper species (Orthoptera, Acrididae) and their ecological applications. Journal of Orthoptera Research, 21, 91–103. https://doi.org/10.3897/jor.31.79819
- Meza-Joya, F.L., Morgan-Richards, M., Koot, E.M. & Trewick, S.A. (2023) Global warming leads to habitat loss and genetic erosion of alpine biodiversity. Journal of Biogeography, 50 (5), 961–975. https://doi.org/10.1111/jbi.14590
- Minh, B.Q., Schmidt, H.A., Chernomor, O., Schrempf, D., Woodhams, M.D., von Haeseler, A. & Lanfear, R. (2020) IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution, 37, 1530–1534. https://doi.org/10.1093/molbev/msaa015
- Morgan-Richards, M., Vilcot, M. & Trewick, S.A. (2021) Lack of assortative mating might explain reduced phenotypic differentiation where two grasshopper species meet. Journal of Evolutionary Biology, 35 (4), 509–519. https://doi.org/10.1111/jeb.13879
- Morris, S.J. (2003) Two new species of Sigaus from Fiordland, New Zealand (Orthoptera: Acrididae). New Zealand Entomologist, 26 (1), 65–74. https://doi.org/10.1080/00779962.2003.9722110
- Nakano, M., Morgan-Richards, M., Clavijo-McCormick, A. & Trewick, S.A. (2022) Abundance and distribution of antennal sensilla on males and females of three sympatric species of alpine grasshopper (Orthoptera: Acrididae: Catantopinae) in Aotearoa New Zealand. Zoomorphology, 142, 51–62. https://doi.org/10.1007/s00435-022-00579-z
- Nei, M. & Rooney, A.P. (2005) Concerted and birth-and-death evolution of multigene families. Annual Review of Genetics, 39, 121–152. https://doi.org/10.1146/annurev.genet.39.073003.112240
- Pitkin, L.M. (1976) A comparative study of the stridulatory files of the British Gomphocerinae (Orthoptera: Acrididae). Journal of Natural History, 19, 17–28. https://doi.org/10.1080/00222937600770031
- Raué, H.A., Klootwijk, J. & Musters, W. (1988) Evolutionary conservation of structure and function of high molecular weight ribosomal RNA. Progress in Biophysics and Molecular Biology, 51 (2), 77–129. https://doi.org/10.1016/0079-6107(88)90011-9
- Richard, G.F., Kerrest, A. & Dujon, B. (2008) Comparative genomics and molecular dynamics of DNA repeats in eukaryotes. Microbiology and Molecular Biology Reviews, 72 (4), 686–727. https://doi.org/10.1128/MMBR.00011-08
- Ronquist, F. & Huelsenbeck, J.P. (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19 (12), 1572–1574. https://doi.org/10.1093/bioinformatics/btg180
- Salmon, J.T. (1950) A new species of Acrididae (Insecta: Orthoptera) from New Zealand. Transactions of the Royal Society of New Zealand: Biological Sciences, 78 (1), 69.
- Schori, J.C., Steeves, T.E. & Murray, T.J. (2020) Designing monitoring protocols to measure population trends of threatened insects: A case study of the cryptic, flightless grasshopper Brachaspis robustus. PLoS ONE, 15 (9), e0238636. https://doi.org/10.1371/journal.pone.0238636
- Sivyer, L., Morgan-Richards, M., Koot, E. & Trewick, S.A. (2018) Anthropogenic cause of range shifts and gene flow between two grasshopper species revealed by environmental modelling, geometric morphometrics and population genetics. Insect Conservation and Diversity, 11, 425–434. https://doi.org/10.1111/icad.12289
- Song, H. (2010) Grasshopper systematics: past, present and future. Journal of Orthopteran Research, 19 (1), 57–68. https://doi.org/10.1665/034.019.0112
- Song, H., Amédégnato, C., Cigliano, M.M., Desutter-Grandcolas, L., Heads, S.W., Huang, Y. Otte, D. & Whiting, M.F. (2015) 300 million years of diversification: elucidating the patterns of orthopteran evolution based on comprehensive taxon and gene sampling. Cladistics, 31 (6), 621–651. https://doi.org/10.1111/cla.12116
- Song, H., Mariño-Pérez, R., Woller, D.A. & Cigliano, M.M. 2018. Evolution, diversification, and biogeography of grasshoppers (Orthoptera: Acrididae). Insect Systematics and Diversity, 2 (4), 3. https://doi.org/10.1093/isd/ixy008
- Stebbins, G.L. (1956) Taxonomy and the evolution of genera, with special reference to the family Gramineae. Evolution, 10, 235–245. https://doi.org/10.2307/2406009
- Strimmer, K. & Rambaut, A. (2002) Inferring confidence sets of possibly misspecified gene trees. Proceedings of the Royal Society B, 269, 137–142. https://doi.org/10.1098/rspb.2001.1862
- Shimodaira, H. (2002) An Approximately unbiased test of phylogenetic tree selection Systematic Biology, 51, 492–508. https://doi.org/10.1080/10635150290069913
- Shimodaira, H. & Hasegawa, M. (1999) Multiple Comparisons of Log-Likelihoods with Applications to Phylogenetic Inference. Molecular Biology and Evolution, 16, 1114. https://doi.org/10.1093/oxfordjournals.molbev.a026201
- Sunnucks, P. & Hales, D.F. (1996) Numerous transposed sequences of mitochondrial cytochrome oxidase I-II in aphids of the genus Sitobion (Hemiptera: Aphididae). Molecular Biology and Evolution, 13 (3), 510–524. https://doi.org/10.1093/oxfordjournals.molbev.a025612
- Trewick, S.A. (2001) Identity of an endangered grasshopper (Acrididae: Brachaspis): taxonomy, molecules and conservation. Conservation Genetics, 2 (3), 233–243. https://doi.org/10.1023/A:1012263717279
- Trewick, S.A. (2008) DNA Barcoding is not enough: mismatch of taxonomy and genealogy in New Zealand grasshoppers (Orthoptera: Acrididae). Cladistics, 24 (2), 240–254. https://doi.org/10.1111/j.1096-0031.2007.00174.x
- Trewick, S.A. & Morris, S.J. (2008) Diversity and taxonomic status of some New Zealand grasshoppers. Department of Conservation, Wellington, 40 pp.
- Trewick, S.A., Hegg, D., Morgan-Richards, M., Murray, T., Watts, C., Johns, P. & Michel, P. (2022) Conservation status of Orthoptera (wētā, crickets and grasshoppers) in Aotearoa New Zealand. New Zealand Threat Classification Series 39. Department of Conservation, Wellington, 28 pp
- Trifinopoulos, J., Nguyen, L.-T., von Haeseler, A. & Minh, B.Q. (2016) W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis, Nucleic Acids Research, 44 (1), W232–W235. https://doi.org/10.1093/nar/gkw256
- Vaux, F., Hills, S.F., Marshall, B.A., Trewick, S.A. & Morgan-Richards, M. (2017) A phylogeny of Southern Hemisphere whelks (Gastropoda: Buccinulidae) and concordance with the fossil record. Molecular Phylogenetics and Evolution, 114, 367–381. https://doi.org/10.1016/j.ympev.2017.06.018
- Wilkerson, R.C., Linton, Y-M., Fonseca, D.M., Schultz, T.R., Price, D.C. & Strickman, D.A. (2015) Making mosquito taxonomy useful: a stable classification of tribe Aedini that balances utility with current knowledge of evolutionary relationships. PlosONE, 10 (7), e0133602. https://doi.org/10.1371/journal.pone.0133602
- Zahid, S., Mariño-Pérez, R. & Song, H. (2021) Molecular phylogeny of the grasshopper family Pyrgomorphidae (Caelifera, Orthoptera) reveals rampant paraphyly and convergence of traditionally used taxonomic characters. Zootaxa, 4969 (1), 101–118. https://doi.org/10.11646/zootaxa.4969.1.5