Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2025-02-19
Page range: 282-300
Abstract views: 118
PDF downloaded: 5

Earthworms in grass lawns and native Atlantic Forest fragments at Embrapa Forestry, Colombo, Paraná state, Brazil

Universidade Federal do Paraná; Rua dos Funcionários 1540; 80035-050; Curitiba-PR; Brasil – Departamento de solos e engenharia agrícola
Escola Superior de Agricultura “Luiz de Queiroz” - Universidade de São Paulo; Av. Pádua Dias; 235; 13418-900 - Agronomia; Piracicaba - SP; Brasil
Universidade Federal do Paraná; Rua dos Funcionários 1540; 80035-050; Curitiba-PR; Brasil – Departamento de solos e engenharia agrícola
Universidade Federal do Paraná; Rua dos Funcionários 1540; 80035-050; Curitiba-PR; Brasil – Departamento de solos e engenharia agrícola
Escola Superior de Agricultura “Luiz de Queiroz” - Universidade de São Paulo; Av. Pádua Dias; 235; 13418-900 - Agronomia; Piracicaba - SP; Brasil
Universidade Federal de Santa Catarina; Rodovia Ulysses Gaboardi; 3000; 89520-000; Curitibanos-SC; Brasil
Universidade Federal de Santa Maria; Av. Roraima; 1000; 97105-900; Camobi; Santa Maria-RS; Brasil
Universidade Federal de Santa Catarina; Rodovia Ulysses Gaboardi; 3000; 89520-000; Curitibanos-SC; Brasil
Universidade Federal do Paraná; Rua dos Funcionários 1540; 80035-050; Curitiba-PR; Brasil – Departamento de solos e engenharia agrícola
Universidade do Estado do Mato Grosso - Rua Prof. Dr. Renato Figueiro Varella; 78690-000; Caixa Postal 08; Nova Xavantina – MT; Brasil
Universidade Federal de Santa Maria; Av. Roraima; 1000; 97105-900; Camobi; Santa Maria-RS; Brasil
Universidade Federal de Santa Maria; Av. Roraima; 1000; 97105-900; Camobi; Santa Maria-RS; Brasil
Universidade Federal de Viçosa - Av. P H Rolfs; s/n - Campus Universitário; 36570-900; Viçosa - MG; Brasil
Universidade Federal da Fronteira Sul - SC-484; Km 02 - Fronteira Sul; 89815-899; Chapecó – SC; Brasil
Universidade de São Paulo - R. da Reitoria; 374 – Cidade Universitária; Butantã; 05508-220; São Paulo – SP; Brasil
Universidade Federal de Santa Catarina; Rodovia Ulysses Gaboardi; 3000; 89520-000; Curitibanos-SC; Brasil
Embrapa Cerrados; Rodovia BR-020; Km 18 Caixa Postal: 08223 CEP: 73310-970 - Planaltina – DF; Brasil
Centro de Ciências Aplicadas à Agricultura Biológica; Herdade Couto da Várzea; Estrada Nacional 354; 6060-270; Ladoeiro; Idanha-a-Nova; Portugal; Centro de Ecologia Funcional; Departamento de Ciências da Vida; Universidade de Coimbra; Calçada Martim de Freitas; 3000-456; Coimbra; Portugal
Maharishi International University; Fairfield; IA 52557; USA
Universidade Federal do Paraná; Rua dos Funcionários 1540; 80035-050; Curitiba-PR; Brasil – Departamento de solos e engenharia agrícola; Embrapa Florestas; Estrada da Ribeira; Km 111; Caixa Postal 319; CEP 83411-000; Colombo-PR; Brazil
Annelida Oligochaeta Crassiclitellata biodiversity bioindicators peri-urban ecosystems

Abstract

Earthworms are important soil biological indicators, but there is relatively little information on their communities in peri-urban soils and land uses in the subtropics. In the present paper, we describe earthworm occurrence and relationships with soil biological, chemical and physical attributes in grass lawns and native Atlantic Forest fragments in the Curitiba metropolitan area, using different sampling methods: quantitative handsorting, formalin extraction and qualitative sampling. Overall, 785 individuals, of six families and 12 species were found, four of which were native (Glossoscolex embrapaensis, Fimoscolex nivae, Urobenus brasiliensis and Ocnerodrilidae sp.), and eight exotic (Dichogaster bolaui, Dichogaster sp., Murchieona minuscula, Aporrectodea rosea, Amynthas gracilis, Amynthas morrisi, Metaphire californica and Pontoscolex corethrurus). Grass lawns had higher abundance (509 individuals) and diversity (Shannon-Wienner, Simpson and Pielou). Handsorting was the most effective sampling method (70% of all individuals). Exotic species predominanted in most areas (≥50% of individuals), indicating a higher degree of human disturbance. Biomass followed the same pattern as abundance, being higher in grass lawns. Multivariate analysis showed that chemical and biological soil attributes did not have a direct correlation with earthworm abundance, and that native forest fragments had higher acidity and C contents.

 

References

  1. Anderson, J.M. & Ingram, J.S.I (1993) Tropical soil biology and fertility: a handbook of methods. 2nd Edition. CAB International, Wallingford, 171 pp.
  2. Anthony, M.A., Bender, S.F. & van der Heijden, M.G.A. (2023) Enumerating soil biodiversity. Proceedings of the National Academy of Sciences of the United States of America, 120, e2304663120 https://doi.org/10.1073/pnas.2304663120
  3. Bartz, M.L.C., Brown, G.G., Gonçalves, M., Locatelli, M., James, S.W. & Baretta, D. (2011) Minhocas Urobenus sp.: das matas para as áreas sob plantio direto. Revista Plantio Direto, 6–7.
  4. Bartz, M.L.C., Pasini, A. & Brown, G.G. (2013) Earthworms as soil quality indicators in Brazilian No-Tillage Systems. Applied Soil Ecology, 69, 39–48. https://doi.org/10.1016/j.apsoil.2013.01.011
  5. Bartz, M.L.C., Brown, G.G., Rosa, M.G., Klauberg Filho, O., James, S.W., Decaëns, T. & Baretta, D. (2014) Earthworm richness in land-use systems in Santa Catarina, Brazil. Applied Soil Ecology, 83, 59–70. https://doi.org/10.1016/j.apsoil.2014.03.003
  6. Baretta, D., Brown, G.G., James, S.W. & Cardoso, E.J.B.N. (2007) Earthworm populations sampled using collection methods in Atlantic forests with Araucaria angustifolia. Scientia Agricola, 64, 384–392. https://doi.org/10.1590/S0103-90162007000400009
  7. Blakemore, R.J. (2009) Cosmopolitan earthworms—a global and historical perspective. In: Shain, D.H. (Ed.), Annelids in Modern Biology. John Wiley & Sons, Inc., New York, New York, pp. 257–283. https://doi.org/10.1002/9780470455203.ch14
  8. Bora, S. & Bisht, S. (2020) Comparative study of earthworm population and depth distribution in two different land use systems. Indian Journal of Ecology, 48, 601–606.
  9. Bora, S., Bisht, S.S. & Reynolds, J.W. (2021) Global diversity of earthworms in various countries and continents: a short review. Megadrilogica, 26 (9), 127–154.
  10. Brown, G.G., James, S.W., Pasini, A., Nunes, D.H., Benito, N.P., Martins, P.T. & Sautter, K.D. (2006) Exotic, peregrine, and invasive earthworms in Brazil: Diversity, distribution, and effects on soils and plants. Caribbean Journal of Science, 42, 339–358.
  11. Brown, G.G. & James, S.W. (2007) Ecologia, biodiversidade e biogeografia das minhocas no Brasil. In: Brown, G.G. & Fragoso, C. (Eds.), Minhocas na América Latina: biodiversidade e ecologia. Embrapa Soja, Londrina, pp. 297–381.
  12. Brown, G.G. & Dominguez, J. (2010) Uso das minhocas como bioindicadoras ambientais: princípios e práticas – o 3º Encontro Latino-americano de Ecologia e Taxonomia de Oligoquetas (ELAETAO3). Acta Zoológica Mexicana, New Series, Número Especial 2, 26, 1–14. https://doi.org/10.21829/azm.2010.262874
  13. Brown, G.G., Kretzschmar, A. & Patrón, J.C. (2010) Modification of root density in pot experiments with two tropical earthworm species. Acta zoológica mexicana, New Series, Número Especial 2, 26, 241–259. https://doi.org/10.21829/azm.2010.262892
  14. Brown, G.G., Callaham Jr., M.A., Niva, C.C., Feijoo, A., Sautter, K.D., James, S.W., Fragoso, C., Pasini, A. & Schmelz, R.M. (2013) Terrestrial oligochaete research in Latin America: the importance of the Latin American meetings on oligochaete ecology and taxonomy. Applied Soil Ecology, 69, 2–12. https://doi.org/10.1016/j.apsoil.2012.12.006
  15. Buch, A.C., Brown, G.G., Niva, C.C., Sautter, K.D. & Lourençato, L.F. (2011) Life cycle of Pontoscolex corethrurus in tropical artificial soil. Pedobiologia, 54, 19–25. https://doi.org/10.1016/j.pedobi.2011.07.007
  16. Bünemann, E.K., Bongiorno, G., Bai, Z., Creamer, R.E., De Deyn, G., De Goede, R., Fleskens, L., Geissen, V., Kuyper, T.W., Mader, P., Pulleman, M., Sukkel, W., van Groenigen, J.W. & Brussaard, L. (2018) Soil quality–A critical review. Soil biology and biochemistry, 120, 105–125. https://doi.org/10.1016/j.soilbio.2018.01.030
  17. Chang, Y.C. (1997) Minireview: natural history of Amynthas hawayanus (Rosa, 1891). Acta biológica Paranaense, Curitiba, 26, 39–50. https://doi.org/10.5380/abpr.v26i0.687
  18. Chang, C.H., Bartz M.L.C., Brown, G.G, Callaham Jr., M.A., Cameron, E.K., Dávalos, A., Dobson, A., Görres, H.B.M., Ikeda, H., James, S.W., Johnston, M.R., McCay, T.S., McHugh D., Minamiya, Y., Nouri-Aiin, M., Novo, M., Ortiz-Pachar, J., Pinder ,R.A., Ransom, T., Richardson, J.B., Snyder, B.A. & Szlavecz, K. (2021) The second wave of earthworm invasions in North America: Biology, environmental impacts, management and control of invasive jumping worms. Biological Invasions, 23, 3291–322. https://doi.org/10.1007/s10530-021-02598-1
  19. Cunha, L., Brown, G.G., Stanton, D.W., da Silva, E., Hansel, F.A., Jorge, G. & Kille, P. (2016) Soil animals and pedogenesis: the role of earthworms in anthropogenic soils. Soil Science, 181 (3/4), 110–125. https://doi.org/10.1097/SS.0000000000000144
  20. da Silva, E., Rosa, M.G., Schuhli, G.S., James, S.W., Decaëns, T., Bartz, M.L.C., Nadolny, H., Feijoo, A. & Brown, G.G. (2017) O potencial do DNA barcoding para a identificação e conservação de espécies de minhocas brasileiras. In: Moreira, F.M.S. & Kasuya, M.C.M. (Eds.), Fertilidade e biologia do solo-Integração e tecnologia para todos. Vol. 2. SBCS, Lavras, pp. 549–570.
  21. da Silva, E., Lima, O.G., Andrade, D.P. & Brown, G.G. (2019) Earthworm populations in forestry plantations (Araucaria angustifolia, Pinus elliottii) and Native Atlantic forest in Southern Brazil compared using two sampling methods. Pedobiologia, 72, 1–7. https://doi.org/10.1016/j.pedobi.2018.10.002
  22. da Silva, E., Santos, A., Nadolny, H.S., Bartz, M.L.C., James, S.W. & Brown, G.G. (2023) Earthworms from natural and managed ecosystems in Southern Bahia, Brazil. Zootaxa, 5255 (1), 270–282. https://doi.org/10.11646/zootaxa.5255.1.23
  23. Demetrio, W.C., Santos, A., Ferreira, T., Nadolny, H., Cardoso, G.B.X., Torres, J.L., da Silva, E.S., Brown, G.G. & Bartz, M.L.C. (2018) Earthworm species in various land use systems in the Campos Gerais region of Lapa, Paraná, Brazil. Zootaxa, 4496 (1), 503–516. https://doi.org/10.11646/zootaxa.4496.1.39
  24. Demetrio, W.C., Da Fonseca, P.M., Dudas, R., Zagatto, M.G.R., Feijoo, A. & Brown, G.G. (2023) Earthworm species in native and planted forests in Brazil. Zootaxa, 5255 (1), 304–323. https://doi.org/10.11646/zootaxa.5255.1.25
  25. Dudas, R.T., Demetrio, W.C., Nadolny, H.S., Brown, G.G. & Bartz, M.L.C. (2023a) Earthworms in the state of Paraná, Brazil: State of the art. Revista Brasileira de Ciência do Solo, 47, 1–22. https://doi.org/10.36783/18069657rbcs20220159
  26. Dudas, R.T., Tavares, A.A., Ercole, C., Bl, D.L., Carlos, E.D.S., Torres, J.L., Smokanit, M., Guaranha, R.M., Brown, G.G. & Bartz, M.L. (2023b) Urban green areas as earthworm species maintainers in Curitiba, Paraná, Brazil. Zootaxa, 5255 (1), 336–346. https://doi.org/10.11646/zootaxa.5255.1.27
  27. Feijoo-Martínez, A. & Brown, G.G. (2023) Three new Glossoscolex (Annelida: Crassiclitellata: Glossoscolecidae) in the truncatus group from the Brazilian Atlantic Forest. Zootaxa, 5255 (1), 220–234. https://doi.org/10.11646/zootaxa.5255.1.21
  28. Fernandes, J.O., Uehara-Prado, M. & Brown, G.G. (2010) Minhocas exóticas como indicadorasde perturbação antrópica em áreas de floresta atlântica. Acta Zoológica Mexicana, 26, 211–217. https://doi.org/10.21829/azm.2010.262889
  29. Ferreira, T., Santos, A., Demetrio, W.C., Cardoso, G.B.X., Moraes, R., Assis, O., Niva, C.C., Smokanit, M., Knópik, J., Sautter, K.D., Brown, G.G. & Bartz, M.L.C. (2018) Earthworm species in public parks in Curitiba, Paraná, Brazil. Zootaxa, 4496 (1), 535–547. https://doi.org/10.11646/zootaxa.4496.1.41
  30. Fragoso, C., Brown, G.G., Patrón, J. C., Blanchart, E., Lavelle, P., Pashanasi, B., Senapati, B. & Kumar, T. (1997) Agricultural intensification, soil biodiversity and agroecosystem function in the tropics: the role of earthworms. Applied soil ecology, 6 (1), 17–35. https://doi.org/10.1016/S0929-1393(96)00154-0
  31. Fragoso, C., Lavelle, P., Blanchart, E., Senapati, B.K., Jimenez, J.J., Martinez, M.D.L.A. & Tondoh, J. (1999) Earthworm communities of tropical agroecosystems: origin, structure and influence of management practices. In: Lavelle, P., Brussaard, L. & Hendrix, P. (Eds.), Earthworm management in tropical agroecosystems, CABI, Wallingford, pp. 27–55.
  32. Fragoso, C. & Brown, G.G. (2007) Ecología y taxonomía de las lombrices de tierra en Latinoamérica: El primer Encuentro Latino-Americano de Ecología y Taxomía de Oligoquetos (ELAETAO1). In: Brown, G.G. & Fragoso, C. (Eds.), Minhocas na América Latina: Biodiversidade e Ecologia. EMBRAPA Soja, Londrina, pp. 33–75.
  33. Garcia, M., Römbke, J., de Brito, M.T. & Scheffczyk, A. (2008) Effects of three pesticides on the avoidance behavior of earthworms in laboratory tests performed under temperate and tropical conditions. Environmental Pollution, 153 (2), 450–456. https://doi.org/10.1016/j.envpol.2007.08.007
  34. Hammer, Ø., Harper, D.A.T. & Ryan, P.D. (2001) PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica, 4 (1), 1–9.
  35. Hendrix, P., Callaham, M., Drake, J., Huang, C., James, S., Snyder, B. & Zhang, W. (2008) Pandora’s box contained bait: The global problem of introduced earthworms. Annual Review of Ecology, Evolution, and Systematics, 39 (1), 593–613. https://doi.org/10.1146/annurev.ecolsys.39.110707.173426
  36. Huerta, E., Kampichler, C., Geissen, V., Ochoa-Gaona, S., Jond, B. & Hernández-Daumás, S. (2009) Towards an ecological index for tropical soil quality based on soil macrofauna. Pesquisa Agropecuária Brasileira, 44, 1056–1062. https://doi.org/10.1590/S0100-204X2009000800039
  37. James, S.W., Bartz, M.L.C. & Brown, G.G. (2023) New Ocnerodrilidae genera, species and records from Brazil. Zootaxa, 5255 (1), 235–269. https://doi.org/10.11646/zootaxa.5255.1.22
  38. Knäpper, C.F.U. (1972) Dominanzerhältnisse der verschiedenene arten der gattung Pheretima in kulturböden von Rio Grande do Sul. Pedobiologia, 12, 23–25. https://doi.org/10.1016/S0031-4056(23)02017-6
  39. Marichal, R., Martinez, A.F., Praxedes, C., Ruiz, D., Carvajal, A.F., Oszwald, J., Hurtado, M.d.P., Brown, G.G., Grimaldi, M., Desjardins, T., Sarrazin, M., Decaëns, T., Velasquez, E. & Lavelle, P. (2010) Invasion of Pontoscolex corethrurus (Glossoscolecidae, Oligochaeta) in landscapes of the Amazonian deforestation arc. Applied Soil Ecology, 46, 443–449. https://doi.org/10.1016/j.apsoil.2010.09.001
  40. Marques, R. & Motta, A.C.V. (2003) Análise química do solo para fins de fertilidade. In: Lima, R.M. Manual de diagnóstico da fertilidade e manejo dos solos agrícolas. Curitiba: Universidade Federal do Paraná, Departamento de Solos e Engenharia Agrícola.
  41. Maschio, W., Vezzani, F. & Brown, G.G. (2014) Earthworm populations in Eucalyptus spp. plantations at Embrapa Forestry, Brazil (Oligochaeta). In: Pavlíček, T., Cardet, P., Almeida, M.T., Pascoal, C. & Cássio, F. (Eds.), Advances in Earthworm Taxonomy VI (Annelida: Oligochaeta). Kasparek Verlag, Heidelberg, pp. 114–126.
  42. Misirlioğlu, M., Reynolds, J.W., Stovanić, M., Trakić, T., Sekulić, J., James, S.W., Csuzdi, C., Decaëns, T., Lapied, E., Phillips, H.R.P., Cameron, E.K. & Brown, G.G. (2023) Earthworms (Clitellata, Megadrili) of the world: an updated checklist of valid species and families, with notes on their distribution. Zootaxa, 5255 (1), 417–438. https://doi.org/10.11646/zootaxa.5255.1.33
  43. Nadolny, H., Santos, A., Demetrio, W., Ferreira, T., dos Santos Maia, L., Conrado, A.C. & Brown, G. (2020) Recomendações para avaliação de populações de minhocas em ecossistemas brasileiros. Pesquisa Agropecuária Brasileira, 55 (X), 01006. https://doi.org/10.1590/s1678-3921.pab2020.v55.01006
  44. Ortíz-Ceballos, A.I., Ortiz-Gamino, D., Andrade-Torres, A., Pérez-Rodríguez, P. & López-Ortega, M. (2019) Pontoscolex corethrurus: A homeless invasive tropical earthworm?. Plos one, 14 (9), e0222337. https://doi.org/10.1371/journal.pone.0222337
  45. Paoletti, M.G. (1999) Using bioindicators based on biodiversity to assess landscape sustainability. Agriculture Ecosystems and Environment, 74, 1–18. https://doi.org/10.1016/S0167-8809(99)00027-4
  46. Palm, J., van Schaik, N.L.M. & Schröder, B. (2013) Modelling distribution patterns of anecic, epigeic and endogeic earthworms at catchment-scale in agro-ecosystems. Pedobiologia, 56 (1), 23–31. https://doi.org/10.1016/j.pedobi.2012.08.007
  47. Plisko, J.D. & Nxele, T.C. (2015) An annotated key separating foreign earthworm species from the indigenous South African taxa (Oligochaeta: Acanthodrilidae, Eudrilidae, Glossoscolecidae, Lumbricidae, Megascolecidae, Microchaetidae, Ocnerodrilidae and Tritogeniidae). African invertebrates, 56 (3), 663–708. https://doi.org/10.5733/afin.056.0312
  48. R Core Team (2020) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Viennna. [program]
  49. Rabello, L.M. & Brown, G. (2005) Sistema eletrônico para extração de minhocas através de corrente elétrica. Circular Técnica No. 31. Embrapa Instrumentação Agropecuária, São Carlos. [unknown pagination]
  50. Raw, F. (1959) Estimating earthworm populations by using formalin. Nature, 184 (4699), 1661–1662. https://doi.org/10.1038/1841661a0
  51. Reynolds, J.W. (2020) Earthworms in American ecoregions. LAP LAMBERT Academic Publishing, Mauritius, 433 pp.
  52. Reynolds, J. & Mısırlıoğlu, İ. (2018) Preliminary Key To Turkish Megadriles (Annelida, Clitellata, Oligochaeta), Based On External Characters, Insofar As Possible. Megadrilogica, 23, 141–160.
  53. Righi, G. (1990) Minhocas de Mato Grosso e de Rondônia. Programa do Trópico Úmido, Programa Polonoroeste, Relatório de Pesquisa. 12. SCT/PR-CNPq, Brasília, 157 pp.
  54. Römbke, J., Schmidt, P. & Höfer, H. (2009) The earthworm fauna of regenerating forests and anthropogenic habitats in the coastal region of Paraná. Pesquisa Agropecuaria Brasileira, 44, 1040–1049. https://doi.org/10.1590/S0100-204X2009000800037
  55. Rosa, D. (1906) Allolobophora minuscula n. sp. Atti della Societa dei Naturalisti e Matematici di Modena, 7 (4), 38–39.
  56. Santos, A., Gorte, T., Demetrio, W., Ferreira, T., Nadolny, H., Cardoso, G., Tonetti, C., Ralisch, R., Pit Nunes, A., Coqueiro, A., Leandro, H., Wandscheer C., Bortoluzzi, J., Brown, G.G. & Bartz, M.L.C. (2018) Earthworm species in no-tillage agroecosystems and native Atlantic forests in Western Paraná, Brazil. Zootaxa, 4496 (1), 517–534. https://doi.org/10.11646/zootaxa.4496.1.40
  57. Sautter, K.D., Brown, G.G, Pasini, A., Benito, N.P., Nunes, D.H. & James, S.W. (2007) Ecologia e biodiversidade das minhocas no Estado do Paraná, Brasil. In: Brown, G.G. & Fragoso, C. (Ed.), Minhocas na América Latina: biodiversidade e ecologia. Embrapa Soja, Londrina, pp. 383–396. [2007]
  58. Sistema de Tecnologia e Monitoramento Ambiental do Paraná [SIMEPAR] (2024) Available from: https://www.simepar.org/ (accessed 23 December 2024)
  59. Teixeira, P.C., Donagema, G.K., Fontana, A. & Teixeira, W.G. (2017) Manual de métodos de análise do solo. 3rd Edition. Embrapa, Brasília, 573 pp.
  60. Valchovski, H. & Misirlioglu, İ.M. (2017) Murchieona minuscula (Rosa, 1906): first finding from Bulgaria with earthworm diversity and zoogeography of Yıldız (Strandja) Mountain in Turkey and Bulgaria. Turkish Journal of Zoology, 41 (4), 731–736. https://doi.org/10.3906/zoo-1605-46
  61. Zicsi, A., Römbke, J. & Garcia, M. (2001) Regenwürmer (Oligochaeta) aus der Umgebung von Manaus (Amazonien). Regenwürmer aus Südamerika 32. Revue Suisse de Zoologie, 108 (1), 153–164. https://doi.org/10.5962/bhl.part.79624