Abstract
Dendrobaena byblica (Rosa, 1893) is a species complex consisting of at least 17 nominal taxa and with Circum-Mediterranean distribution. The taxonomic classification of this group based on shape of internal structures and external characteristics indicated that this species complex indeed consists of several clades. More molecular studies are needed to confirm this issue. In this study, samples from the Hyrcanian forests in the north of Iran were studied, which were genetically different from the sequences retrieved from GenBank. The results of the ABGD analyses suggest that the genetic distance for species delimitation in D. byblica is 9%, a much lower value than that reported for other species included in the family Lumbricidae. The range of COI K2p genetic distance between GenBank sequences of Dendrobaena and examined species in the present study, is 12.3–24.6%. Assessing whether these genetic variations correspond to different biological species or correspond to intraspecific phenotypic variability will require further studies using other genetic molecular markers.
References
- Bouché, M.B. (1972) Lombriciens de France. Ecologie et systématique Vol. 72, No. HS, INRA Editions, 671 pp.
- Bozorgi, F., Seiedy, M., Malek, M., Aira, M., Pérez-Losada, M. & Domínguez, J. (2019) Multigene phylogeny reveals a new Iranian earthworm genus (Lumbricidae: Philomontanus) with three new species. PloS one, 14 (1), e0208904. https://doi.org/10.1371/journal.pone.0208904
- Csuzdi, Cs. & Zicsi, A. (2003) Earthworms of Hungary (Annelida: Oligochaeta; Lumbricidae). In: Csuzdi, C.S. & Mahunka, S. (Eds.), Pedozoologica Hungarica 1. Hungarian Natural History Museum, Budapest, 271 pp.
- Csuzdi, Cs., Chang, C.H., Pavlícek, T., Szederjesi, T., Esopi, D. & Szlávecz, K. (2017) Molecular phylogeny and systematics of native North American lumbricid earthworms (Clitellata: Megadrili). PloS one, 12 (8), e0181504. https://doi.org/10.1371/journal.pone.0181504
- Chang, C.H. & James, S. (2011) A critique of earthworm molecular phylogenetics. Pedobiologia, 54, S3–S9. https://doi.org/10.1016/j.pedobi.2011.07.015
- Decaens, T., Porco, D., Rougerie, R., Brown, G.G. & James, S.W. (2013) Potential of DNA barcoding for earthworm research in taxonomy and ecology. Applied Soil Ecology, 65, 35–42. https://doi.org/10.1016/j.apsoil.2013.01.001
- Edgar, R.C. (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics, 5, 1–19. https://doi.org/10.1186/1471-2105-5-113
- Ezzatpanah, S., Latif, R., Masoumeh, M. & Hasan, S. (2010) Earthworm fauna of the western Mazandaran province, Iran: (Oligochaeta: Lumbricidae, Megascolecidae). Zoology in the Middle East, 51 (sup2), 67–74. https://doi.org/10.1080/09397140.2010.10638459
- Folmer, R.H.A., Nilges, M., Folkers, P.J.M., Konings, R.N.H. & Hilbers, C.W. (1994) A model of the complex between single-stranded DNA and the single-stranded DNA binding protein encoded by gene V of filamentous bacteriophage M13. Journal of molecular biology, 240 (4), 341–357. https://doi.org/10.1006/jmbi.1994.1449
- Geffert, A., Geffertova, J. & Dudiak, M. (2019) Direct method of measuring the pH value of wood. Forests, 10 (10), 852. https://doi.org/10.3390/f10100852
- James, S.W., Porco, D., Decaens, T., Richard, B., Rougerie, R. & Erseus, C. (2010) DNA barcoding reveals cryptic diversity in Lumbricus terrestris L., 1758 (Clitellata): resurrection of L. herculeus (Savigny, 1826). PloS one, 5 (12), e15629. https://doi.org/10.1371/journal.pone.0015629
- King, R.A., Tibble, A.L. & Symondson, W.O. (2008) Opening a can of worms: unprecedented sympatric cryptic diversity within British lumbricid earthworms. Molecular ecology, 17 (21), 4684–4698. https://doi.org/10.1111/j.1365-294X.2008.03931.x
- Kimura, M. (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of molecular evolution, 16, 111–120. https://doi.org/10.1007/BF01731581
- Latif, R., Malek, M. & Csuzdi, Cs. (2017) When morphology and DNA are discordant: Integrated taxonomic studies on the Eisenia fetida/andrei complex from different parts of Iran (Annelida, Clitellata: Megadrili). European Journal of Soil Biology, 81, 55–63. https://doi.org/10.1016/j.ejsobi.2017.06.007
- Latif, R., Malek, M., Aminjan, A.R., Pasantes, J.J., Briones, M.J. & Csuzdi, Cs. (2020) Integrative taxonomy of some Iranian peregrine earthworm species using morphology and barcoding (Annelida: Megadrili). Zootaxa, 4877 (1), 163–173. https://doi.org/10.11646/zootaxa.4877.1.7
- Latif, R., Rejali, F., Roohi, A. & Esmaelzad, A. (2021a) Earthworm biodiversity from Hyrcanian forests: natural vs. agricultural. In Keep soil alive, protect soil biodiversity: Global Symposium on Soil Biodiversity 19–22 April 2021. Proceedings. Food & Agriculture Org, p. 210.
- Latif, R., Rejali, F., Roohi Aminjan, A. & Esmaeilizad, A. (2021b) New earthworm records from the Caspian Hyrcanian Forests of Iran (Oligochaeta: Megadrili). Zootaxa, 5052 (3), 433–440. https://doi.org/10.11646/zootaxa.5052.3.8
- Latif, R. & Roohi Aminjan, A. (2022) Distribution of Aporrectodea and Dendrobaena species (Clitellata: Megadrili) in Iran. Journal of Animal Research (Iranian Journal of Biology), 35 (4), 358–371. [https://dorl.net/dor/20.1001.1.23832614.1401.35.4.4.4]
- Marchán, D.F., Decaëns, T., Domínguez, J. & Novo, M. (2022) Perspectives in Earthworm Molecular Phylogeny: Recent Advances in Lumbricoidea and Standing Questions. Diversity, 14 (1), 30. https://doi.org/10.3390/d14010030
- Mirmonsef, H., Malek, M. & Latif, R. (2011) The earthworm fauna of Tehran Province, Iran: an ecological characterization. Iranian Journal of Animal Biosystematics 7 (2): 89–97.
- Nylander, J.A.A. (2004) MrModeltest Version 2. Program Distributed by the Author. Evolutionary Biology Centre, Uppsala University, Uppsala.
- Novo, M., Almodóvar, A., Fernández, R., Trigo, D. & Cosín, D.J.D. (2010) Cryptic speciation of hormogastrid earthworms revealed by mitochondrial and nuclear data. Molecular Phylogenetics and Evolution, 56 (1), 507–512. https://doi.org/10.1016/j.ympev.2010.04.010
- Omrani, G.A. (1973). Bodenozoologische Untersuchungen über Regenwürmer im Zentral- und Nordiran. Inaugural Dissertation. Institut für Bodenkunde und Bodenerhaltung und Tropeninstitut der Justus Liebig-Universität Giessen.
- Puillandre, N., Brouillet, S. & Achaz, G. (2021) ASAP: assemble species by automatic partitioning. Molecular Ecology Resources, 21 (2), 609–620. https://doi.org/10.1111/1755-0998.13281
- Pop, A.A., Wink, M. & Pop, V.V. (2003) Use of 18S, 16S rDNA and cytochrome c oxidase sequences in earthworm taxonomy (Oligochaeta, Lumbricidae): The 7th international symposium on earthworm ecology· Cardiff· Wales· 2002. Pedobiologia, 47 (5–6), 428–433. https://doi.org/10.1078/0031-4056-00208
- Pentinsaari, M., Vos, R. & Mutanen, M. (2017) Algorithmic single-locus species delimitation: Effects of sampling effort, variation and nonmonophyly in four methods and 1870 species of beetles. Molecular Ecology Resources, 17, 393–404. https://doi.org/10.1111/1755-0998.12557
- Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) MrBayes 3.2. efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic biology, 61, 539–542. https://doi.org/10.1093/sysbio/sys029
- Saitou, N. & Nei, M. (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular biology and evolution, 4 (4), 406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454
- Shekhovtsov, S.V., Berman, D.I., Bazarova, N.E., Bulakhova, N.A., Porco, D. & Peltek, S.E. (2016) Cryptic genetic lineages in Eisenia nordenskioldi pallida (Oligochaeta, Lumbricidae). European Journal of Soil Biology, 75, 151–156. https://doi.org/10.1078/0031-4056-00208
- Shekhovtsov, S.V., Derzhinsky, Y.A., Poluboyarova, T.V., Golovanova, E.V. & Peltek, S.E. (2020) Phylogeography and genetic lineages of Aporrectodea rosea (Lumbricidae, Annelida). European Journal of Soil Biology, 99, 103191. https://doi.org/10.1016/j.ejsobi.2020.103191
- Stamatakis, A. (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30, 1312–1313. https://doi.org/10.1093/bioinformatics/btu033
- Szederjesi, T., Latif, R., Marton, O. & Csuzdi, Cs. (2018) Resurrection of the earthworm species Dendrobaena fedtschenkoi (Michaelsen, 1900), a former synonym of Dendrobaena byblica (Rosa, 1893) (Clitellata: Megadrili). Zootaxa, 4496 (1), 190–196. https://doi.org/10.11646/zootaxa.4496.1.14
- Szederjesi, T., Pop, V.V., Pavlíček, T., Marton, O., Krizsik, V. & Csuzdi, Cs. (2018) Integrated taxonomy reveals multiple species in the Dendrobaena byblica (Rosa, 1893) complex (Oligochaeta: Lumbricidae). Zoological Journal of the Linnean Society, 182 (3), 500–516. https://doi.org/10.1093/zoolinnean/zlx049
- Sancholi, N., Roohi Aminjan, A., Latif, R., Sarabandi, V. & Riki, A. (2019) Earthworms from northern parts of Sistan and Balouchestan Province, Iran (Oligochaeta, Lumbricidae). Iranian Journal of Animal Biosystematics, 15 (2).
- Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. & Kumar, S. (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular biology and evolution, 28 (10), 2731–2739. https://doi.org/10.1093/molbev/msr121
- Vsevolodova-Perel, T.S. & Leirikh, A.N. (2014) Distribution and ecology of the earthworm Eisenia nordenskioldi pallida (Oligochaeta, Lumbricidae) dominant in Southern Siberia and the Russian Far East. Entomological Review, 94, 479–485. https://doi.org/10.1134/S0013873814040034
- Zicsi, A. & Pop, V.V. (1991) Cernosvitovia munteniana sp. n. ein neuer Regenwurm aus Rumanien (Oligochaeta, Lumbricidae). Mitteilungen aus den Hamburgischen Zoologischen Museum und Institut, 88, 125–127.